ASYNCHRONE DREPHASEN-MOTOREN SERIE DELPHI

CERTIFICATO

Nr. 50 100 1185 Rev.012

SI ATTESTA CHE / THIS IS TO CERTIFY THAT

IL SISTEMA DI GESTIONE PER LA QUALITÀ DI THE QUALITY MANAGEMENT SYSTEM OF

MOTIVE S.r.I.

SEDE LEGALE E OPERATIVA: REGISTERED OFFICE AND OPERATIONAL SITE:

VIA LE GHISELLE 20 IT - 25014 CASTENEDOLO (BS)

É CONFORME AI REQUISITI DELLA NORMA HAS BEEN FOUND TO COMPLY WITH THE REQUIREMENTS OF

UNI EN ISO 9001:2015

QUESTO CERTIFICATO È VALIDO PER IL SEGUENTE CAMPO DI APPLICAZIONE THIS CERTIFICATE IS VALID FOR THE FOLLOWING SCOPE OF APPLICATION

Progettazione e fabbricazione di motori elettrici, riduttori meccanici ed

Design and manufacture of electrical motors, mechanical gearboxes and variable speed drives (IAF 19, 18)

Per l'Organismo di Certificazione For the Certification Body TÜV Italia S.r.I.

PRIMA CERTIFICAZIONE / FIRST CERTIFICATION: 2001-07-20

TOV Italia • Gruppo TOV SUD • Viale Fulvio Testi, 280/6 • 20128 Milano • Italia • www.tuvsud.com/rr

Validità /Validity

Data emissione /

Issuing Date 2025-02-03

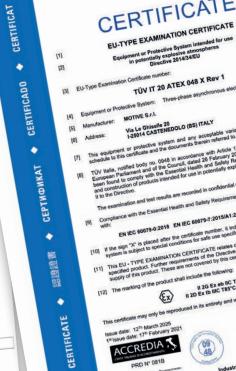
2025-03-03

2028-03-02

Dal / From:

Al/To:

IT AEOF 21 1809 Autorizzazione AEO 2. Autorità che rilascia l'Autorizzazione Agenzia delle Dogane e dei Monopoli Direzione Centrale Dogane Ufficio AEO, compliance e grandi imprese 1. Titolare dell'Autorizzazione AEO MOTIVE S.R.L. Codice EORI 1T03580280174 3. Stabile organizzazione


il Titolare indicato nel riquadro 1 è un

Operatore economico autorizzato Semplificazioni doganali / Sicurezza (AEOF)

Data di validità dell'Autorizzazione 15/05/2021

il Direttore dell'Ufficio

CERTIFICATE EU-TYPE EXAMINATION CERTIFICATE [3] EU-Type Examination Certificate number: Equipment or Protective System: Three-phase asynchronous electric motors DELPHI series TÜV IT 20 ATEX 048 X Rev 1 Manufacturer. MOTIVE S.r.l. TÜV Italia, notified body no. C948 in accordance with Article 21 of Directive 2014/34EU of the European Parliament and of the Council, dated 27 February Routenants relating to the design seen found to comply with the Essential Health and Safety Rendermants relating to the Article and construction of products intended for use in botenfully explosive earnoogheres given in Article Its the Directive. The examination and test results are recorded in confidential report no. R 20 EX 046 Rev. 1. Compliance with the Essential Health and Safety Requirements has been assured by compliance with EN IEC 60079-0:2018 EN IEC 60079-7:2015/A1:2018 EN 60079-31:2014 This EU - TYPE EXAMINATION CERTIFICATE relates only to the design and construction of the specified product. Further requirements of the Directive apoly to the manufacturing process and supply of this product. These are not covered by this certificate.

TUV

|| 2G Ex eb ||C T6, T3 Gb

INHALT

Technische Eigenschaften Baugrößen 56 -132	S. 4-5		
Technische Eigenschaften Baugrößen 160-355	S. 6		
DELFIRE Motoren	S. 7		
Leistung	S. 8-9		
EG-Markierung Delphi EX	S. 10		
Schiffsmotoren Zertifizierung	S. 11	STATE OF THE PARTY	
Motorenschutz Bedienungsart	S. 12	Particular Control of the Control of	
Schutzart	S. 13		SACRET SERVICES SERVI
Betriebsbedingungen Servoventilation Encoder	S. 14	, N III	Cm 12/88
Anschlussschemen Selbsthaltende	S. 15		A Promote A Property of the Pr
Dreiphasen-Motoren Delphi AT	S. 16		E wante
Bremsbeschreibung Bremsbetrieb Einstellungen	S. 17	Danish and Commence of the Com	1000
Entblockung/IP / Bremskontal ibe aus Edelstahl/ Mikroschalter für Bremsposi Versorgung	ktsche- tion S. 18		MARKET AND THE PARTY OF THE PAR
Versorgung	S. 19	- Y	2. D 2. D
		400	to, 50 to, 50

Konfigurator	S.	20		
Konstruktionsformen Montagepositionen	S.	21		0 d d d d d d d d d d d d d d d d d d d
Maßtabellen	S. 22	-23		
				0 A .
Technische Daten	S. 24	-25		
				Constitution of the consti
Technische Daten	S. 26	-27		
Technische Daten	S. 28	-29	Dec .	B== 1===
Technische Daten	S. 30	-31		
				A. S. S. S. S. S.
Technische Daten		32		
Liste synthetischer Komponenten	S.	33		
Lager und Ölspritzring		34	14.	
Allgemeine Verkaufsbedingungen	S.	35	. 0	TOTAL PROPERTY OF THE PROPERTY

Die Motive-Motoren werden nach den internationalen Gleichmäßigkeitsnormen hergestellt; jedes Maß, bei jeder Bauform, ist aus den Tabellen der Norm IEC 72-1 berechnet.

Die asynchronen Dreiphasen-Motoren von Motive der Serie Delphi sind vom geschlossenen Typ mit Außenventilation.
Das Gehäuse bis einschließlich Größe 132
wird in Druckguss-Aluminiumlegierung
hergestellt, von Größe 160 bis 355 aus Gusseisen

Ausführung sämtlicher Motoren DELPHI mit:

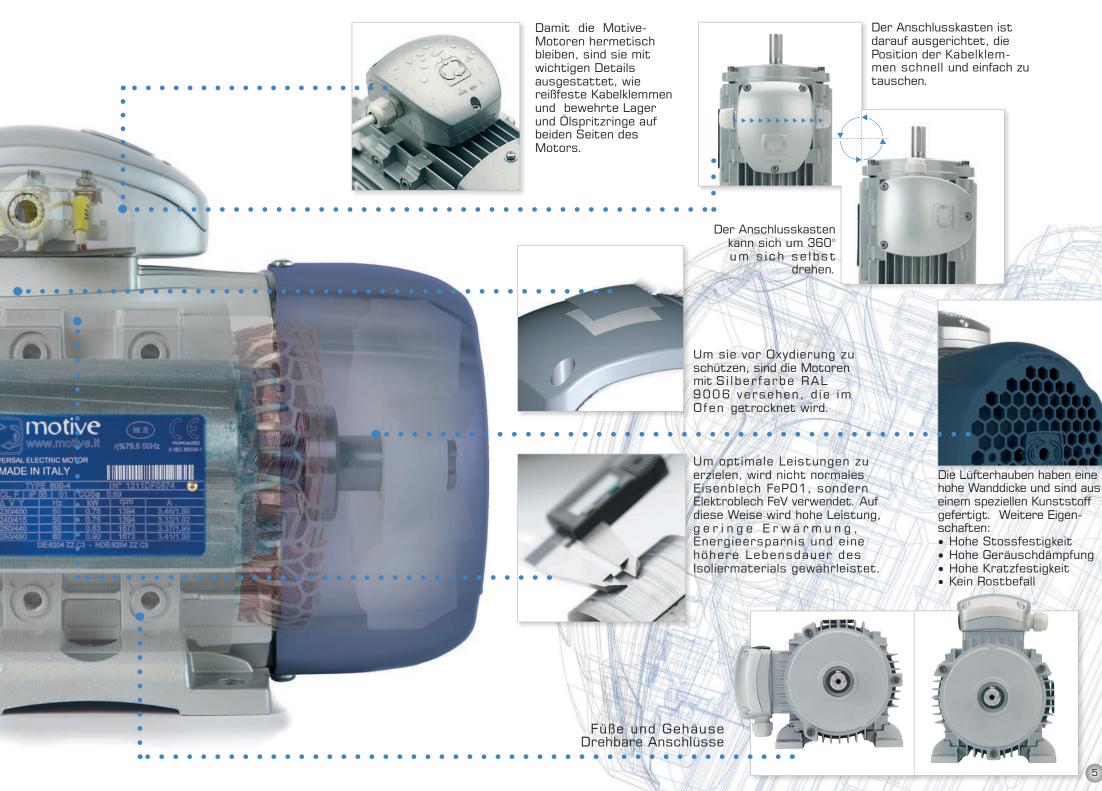
Dreiphasiger, Mehrfachspannung Multifrequenz 50/60Hz Isolierklasse F. (H auf Anfrage) Dauerbetrieb S1, Schutzart IP55, (IP56, 66 und 67 auf Anfrage) Effizienzklasse IE2, IE3 oder IE4 tropenfeste Wicklung Eignung für Umrichterspeisung

IE2, high efficiency class IEC 60034-30-1 IE3, premium efficiency class IEC 60034-30-1

IE4, super premium efficiency class IEC 60034-30-1

Laden Sie unseren Katalog der Einphasenmotoren MONO von www.motive.it runter.

TECHNISCHE EIGENSCHAFTEN BAUGRÖSSEN 56-132


Die Wicklung ist mit einem Kupferdraht mit doppelter, hitzefester Lackierung, ausgeführt, die einen hohen Schutz bei Belastungen gewährt. Ein verstärkender Trennfilm zwischen den Phasen schützt den Motor vor hohen Spannungsspitzen, die typisch für die Stromzuführung durch Inverter sind.

Unsere eingesetzten Lager werden aufgrund ihrer Geräuschlosigkeit und Zuverlässigkeit ausgewählt und aus denselben Gründen wird der Rotor dynamisch ausgewuchtet.

Ab Größe 90 wurde der Sitz der Lager durch einen Eisenring verstärkt, der in dem Druckguss-Aluminium iedes Flansches eingelassen ist.

TECHNISCHE EIGENSCHAFTEN BAUGRÖSSEN 160-355

Die Motive-Motoren ab Baugröße 160 bis Baugröße 355 sind aus Gusseisen gefertigt und haben alle Funktionen der Delphi-Linie. u.a.:

- Standardbaugrößen nach Internationalem Standard (IEC 72-1)
- Mehrfachspannung und Multifreguenz 50/60Hz
- Isolierklasse F, (H, oder H+ auf Anfrage)
- Dauerbetrieb S1,
- Schutzart IP55, (IP56, 66 und 67 auf Anfrage)
- tropenfeste Wicklung und verstärkte Isolierung

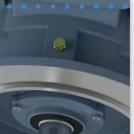
• geeignet für Einsatz mit Wechselrichter * [ab Leistung von 110 kW empfehlen wir den Einsatz von isolierten Lagern (Optional)]

IE3, premium efficiency class IEC 60034-30-1

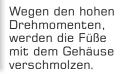
IE4, super premium efficiency class IEC 60034-30-1

Über die gesamte Serie Delphi besteht das gleiche Schließsystem, mit dem IP65 Klemmkasten aus Aluminium bis Baugröße 280, um die üblichen Defekte des Gusseisens zu vermeiden.

3-Serienmässig eingebaute PTC-Thermistoren schützen den Motor und das System vor Störungen.


Mit Hebeöse ausgestattet, eine bei Montage B3 (mit Füßen), zwei bei Montage B5 (mit Flansch).

Der Klemmkasten kann in 90° Schritten um 360° gedreht werden.



Bis Baugröße 280 sind abgedichtete, selbstschmierende Lager vorgesehen, die daher wartungsfrei sind und keine periodische Schmierung benötigen.

Ab Baugröße 315 aufwärts jedoch, sind diese mit Fett versehen und, mit Ausnahme der zweipoligen Serie, mit Wälzlagern ausgestattet die sehr hohen radialen Belastungen standhalten (siehe Par "Teileliste ")

Auf Wunsch kann Motive den Klemmenkasten links oder rechts montieren.

DELFIRE MOTOREN, FÜR EINSATZ BIS ZU 100°C UMGEBUNGSTEMPERATUR.

"DELFIRE" ist ein innovatives Sortiment von Drehstrommotoren die in Umgebungen arbeiten können von bis zu 100 ° C, und zwar im S1 Dauerbetrieb.

Der ideale Motor für bestimmte, sehr anspruchsvolle Anwendungen wie Trocknungsanlagen, Lebensmitteltrocknungsanlagen,

Lüftungssysteme für Öfen, Wärmetauscher

Die verwendete Technologie findet Ihren Ursprung in den EN 12101-3 Motoren für die Rauchentsorgung. Allerdings, anstatt nur im Notfall ein paar Stunden zu funktionieren, sind die Delfire Motoren für den Dauerbetrieb S1 ausgelegt und haben die gleiche Lebensdauer eines normalen Motors. Die verschiedenen Funktionen sind unter anderem:

 Metall Kabelverschraubungen und Lüftung, Oeldichtungen aus Viton, Lager für hohe Temperaturen, Schild mit gesinterten Sitz.

- doppelte Imprägnierung und Trocknung des Stators.
 Diese dicke Schicht sorgt für extreme Beständigkeit gegen Kondenswasser und einen erhöhten Schutz vor Überspannungen und hohen Spannungen,
- Mit spezieller, gegen Plizbefall geschützte,
 Epoxydverbindung beschichtet, beständig gegen Säuren und Laugen. Verbessert auch die Isolierung und lässt die Feuchtigkeit abgleiten.

Erhältlich ab Größe 71 IEC (0,25 kW) bis Größe 250 (55 kW), in 2-4-6-poliger Ausführung.

Für Leistung und Abmessungsdaten der Delfire Motoren bitte nicht auf den Inhalt der Standard-Motordaten in diesem Katalog zurückgreifen. Bitte wenden Sie sich an unser Vertriebsbüro.

LEISTUNGEN

Um ein gemeinsames System für die Klassifizierung der Wirkungsgrade von Induktionsmotoren zu definieren, hat IEC (Internationale Elektrotechnische Kommission) die Norm IEC 60034 "Rotierende Elektrik Maschinen" erstellt:

- Teil 30-1: Wirkungsgrade von Motoren mit konstanter Drehzahl, Dreiphasen-Käfig-Induktionsmotoren (IE-Code) ".
- Teil 2-1: Standardmethoden zur Bestimmung Verluste und Effizienz aus Tests.
- In Europa ist die Anwendung einen Schritt voraus in der Anwendung der Ökodesign-Richtlinie für Energie Produkte (ErP) 2009/125 / EG. Sie basiert auf ein normatives Bild und auf die Ökodesign Verordnung (EU) Nr. 640/2009, ersetzt im Oktober 2019 durch die Verordnung (EU) 2019/1781, diese besagt dass:
- Ab Juni 2011 die Effizienz von Motoren von 0,75 kW bis 375 kW niedriger als IE-2 verboten sind
- Ab 2015 der Mindestwirkungsgrad für Motoren, die nicht mit einer elektronischen variablen Geschwindigkeit ausgestattet sind, bei bei Lesitungen von 7,5 bis 375 kW .IE3 sein müssen.
- Ab 2017 die Verpflichtung von IE-3 ausgeweitet worden ist

Für Motoren, die nicht mit Frequenzumrichter ausgestattet sind Bei Leistungen von 0,75 kW bis 5,5 kW

Wir empfehlen die Motive Umrichter NEO oder NANO

- Ab dem 1. Juli 2021: die Energieeffizienz von Drehstrommotoren ≥ 0 0,75 kW und \leq 1.000 kW mit 2, 4, 6 oder 8 Pole, direkt für den Betrieb am öffentlichen Stromnetz bestimmt (DOL), einschließlich ATEX (nur Ausnahme Ex e) und Bremsmotoren müssen mindestens der IE3 Effizienzstufe entsprechen; die Energieeffizienz von drei Phasen Motoren mit einer Nennleistung \geq 0,12 kW und <0,75 kW mit 2, 4, 6 oder 8 Polen, einschließlich ATEX- und Bremsmotoren müssen mindestens das IE2-Effizienzniveau erreichen:

- Ab dem 1. Juli 2023:

die Energieeffizienz von ATEX Ex eb mit Lesitungen ≥ 0.12 kW und ≤ 1 000 kW mit 2, 4, 6 oder 8 Pole und Einphasenmotoren mit Leistung ≥ 0.12 kW muss mindestens der IE2 Effizienz entsprechen; die Energieeffizienz von dreiphasigen Motoren, die keine Bremsmotoren oder ATEX sind mit einer Leistung von ≥ 75 kW und ≤ 200 kW mit 2, 4 oder 6 Pole müssen mindestens der IE4 Effizienz entsprechen

Effizienzklasse bei 50Hz

							IIZICIIZKI	asse ne	1 00112							
		ΙE	-1			ΙE	-2			ΙE	-3			ΙE	-4	
		Anzah	nl Pole			Anzah	nl Pole			Anzah	nl Pole			Anzał	nl Pole	
(kW)	2	4	6	8	2	4	6	8	2	4	6	8	2	4	6	8
0.12	45.0	50.0	38.3	31.0	53.6	59.1	50.6	39.8	60.8	64.8	57.7	50.7	66.5	69.8	64.9	62.3
0.18	52.8	57.0	45.5	38.0	60.4	64.7	56.6	45.9	65.9	69.9	63.9	58.7	70.8	74.7	70.1	67.2
0.2	54.6	58.5	47.6	39.7	61.9	65.9	58.2	47.4	67.2	71.1	65.4	60.6	71.9	75.8	71.4	68.4
0.25	58.2	61.5	52.1	43.4	64.8	68.5	61.6	50.6	69.7	73.5	68.6	64.1	74.3	77.9	74.1	70.8
0.37	63.9	66.0	59.7	49.7	69.5	72.7	67.6	56.1	73.8	77.3	73.5	69.3	78.1	81.1	78	74.3
0.4	64.9	66.8	61.1	50.9	70.4	73.5	68.8	57.2	74.6	78	74.4	70.1	78.9	81.7	78.7	74.9
0.55	69.0	70.0	65.8	56.1	74.1	77.1	73.1	61.7	77.8	80.8	77.2	73	81.5	83.9	80.9	77
0.75	72.1	72.1	70	61.2	77.4	79.6	75.9	66.2	80.7	82.5	78.9	75	83.5	85.7	82.7	78.4
1.1	75	75	72.9	66.5	79.6	81.4	78.1	70.8	82.7	84.1	81	77.7	85.2	87.2	84.5	80.8
1.5	77.2	77.2	75.2	70.2	81.3	82.8	79.8	74.1	84.2	85.3	82.5	79.7	86.5	88.2	85.9	82.6
2.2	79.7	79.7	77.7	74.2	83.2	84.3	81.8	77.6	85.9	86.7	84.3	81.9	88	89.5	87.4	84.5
3	81.5	81.5	79.7	77.0	84.6	85.5	83.3	80.0	87.1	87.7	85.6	83.5	89.1	90.4	88.6	85.9
4	83.1	83.1	81.4	78.2	85.8	86.6	84.6	81.9	88.1	88.6	86.8	84.8	90	91.1	89.5	87.1
5.5	84.7	84.7	83.1	81.4	87	87.7	86	83.8	89.2	89.6	88	86.2	90.9	91.9	90.5	88.3
7.5	86	86	84.7	83.1	88.1	88.7	87.2	85.3	90.1	90.4	89.1	87.3	91.7	92.6	91.3	89.3
11	87.6	87.6	86.4	85.0	89.4	89.8	88.7	86.9	91.2	91.4	90.3	88.6	92.6	93.3	92.3	90.4
15	88.7	88.7	87.7	86.2	90.3	90.6	89.7	88.0	91.9	92.1	91.2	89.6	93.3	93.9	92.9	91.2
18.5	89.3	89.3	88.6	86.9	90.9	91.2	90.4	88.6	92.4	92.6	91.7	90.1	93.7	94.2	93.4	91.7
22	89.9	89.9	89.2	87.4	91.3	91.6	90.9	89.1	92.7	93	92.2	90.6	94	94.5	93.7	92.1
30	90.7	90.7	90.2	88.3	92	92.3	91.7	89.8	93.3	93.6	92.9	91.3	94.5	94.9	94.2	92.7
37	91.2	91.2	90.8	88.8	92.5	92.7	92.2	90.3	93.7	93.9	93.3	91.8	94.8	95.2	94.5	93.1
45	91.7	91.7	91.4	89.2	92.9	93.1	92.7	90.7	94	94.2	93.7	92.2	95	95.4	94.8	93.4
55	92.1	92.1	91.9	89.7	93.2	93.5	93.1	91.0	94.3	94.6	94.1	92.5	95.3	95.7	95.1	93.7
75	92.7	92.7	92.6	90.3	93.8	94	93.7	91.6	94.7	95	94.6	93.1	95.6	96	95.4	94.2
90	93	93	92.9	90.7	94.1	94.2	94	91.9	95	95.2	94.9	93.4	95.8	96.1	95.6	94.4
110	93.3	93.3	93.3	91.1	94.3	94.5	94.3	92.3	95.2	95.4	95.1	93.7	96	96.3	95.8	94.7
132	93.5	93.5	93.5	91.5	94.6	94.7	94.6	92.6	95.4	95.6	95.4	94	96.2	96.4	96	94.9
160	93.8	93.8	93.8	91.9	94.8	94.9	94.8	93.0	95.6	95.8	95.6	94.3	96.3	96.6	96.2	95.1
200-1000	94	94	94	92.5	95	95.1	95	93.5	95.8	96	95.8	94.6	96.5	96.7	96.3	95.4

Welche Position nimmt Motive dazu ein?

- Die Methode zur Messung Wirkungsgrades des Motive-Motoren, welche die Grundlage für die angegebenen Leistungswerte und Prüf- und Testberichte auf unserer Website darstellt, (alle angegebenen Werte sind durch einen veröffentlichten Prüfbericht nachgewiesen), beruht immer auf dem System der real gemessenen Verluste.

https://www.motive.it/en/ rapporti.php

- Seit Juni 2011 produziert Motive keine IE1-Motoren mehr.
- Auch IE3-Elektromotoren mit "Premium-Effizienz" sind erhältlich, ebenso wie seit 2023 IE4-Motoren mit "Super-Premium-Effizienz".
- Alle 3PH-Motoren unter 0.75 kW sind min IE2 "hohe Effizienz"
- IE2-Motoren mit einer Leistung von mehr als 0.75 kW sind noch verfügbar, aber nicht für direkten Betrieb

Testsystem, Testberichte, Das Daten zu Original Motive Motoren wurde IMQ zertifiziert, die Italienische Zertifizierungsstelle für Elektrotechnik und Haushaltsgeräte. Dieselbe hat unser internes Labor nach der Norm IEC / ISO17025 zertifiziert und dann die

interne Tests auf einer Stichprobenliste Motoren überwacht. Testlabor und Verfahren wurde ebenfalls zertifiziert von RINA (Zertifikat Nr. 2015 / MI/.01/537), eingereicht bei ISO: 9001 TÜV Zertifizierungskontrollen.

Im Jahr 2020 wurde die Effizienz der Motive 3PH-Motoren ebenfalls vom CQC für den chinesischen Markt zertifiziert.

Herewith I confirm that Motive's laboratory, evaluated according to the requirements of stand IECTSO 17025, it found in compliance with makin requirements of the above mentioned stan The allowing motors were tested according to standard IEC 60034-3 with supervision of DM

Model designation rated power (kW)

3 0,75

90L-4 Em 100LB-4 Eff1 112M-4 Eff1 132M-4 Eff1

112M-6 Eff

Tel. (+39) 025073484

IMQ S.p.A

20138 Milano

Tel. (+39) 0250731

Es ergeben sich zahlreiche Vorteile:

ENERGIEVERBRAUCH

Im Vergleich zu den gesamten Lebensdauerkosten, ist der Anschaffungspreis eines Motors um 10% niedriger (nur 2-3% laut einem Bericht des Industrieverbands Confindustria vom 8. Juni 2007). Der Rest ist Energieersparnis. Bei den IE3-Motoren wird der Aufpreis gegenüber den IE2-Motoren in einem Nutzungszeitraum von durchschnittlich weniger als einem Jahr wettgemacht. Dieser Zeitraum schwankt aufgrund des spezifischen Wirkungsgradunterschieds, der Verwendung des Motors und der Stromkosten der jeweiligen Länder. Motive kann eine Tabellenkalkulation zur Bewertung der einzelnen Umstände zur Verfügung stellen.

AUSWIRKUNGEN AUF DIE LEBENSDAUER Ein weiterer zusätzlicher Effekt besteht darin, dass sich Motoren mit einem höheren Wirkungsgrad weniger erhitzen, den Alterungszyklus des Isoliermaterials verlangsamen und länger halten.

Bei den Motoren IE2 bis 15 kW beträgt die durchschnittliche Lebensdauer 35.000 bis 40.000 Stunden, 60.000 Stunden bei den arößeren.

Die IE3-Motoren haben eine durchschnittlich 40% längere Lebensdauer.

AUSWIRKUNGEN AUF DIE UMWELT

Elektromotoren machen 65% des gesamten Energieverbrauchs in der Industrie aus. Motoren mit höherem Wirkungsgrad zielen auf eine nachhaltige Entwicklung, Reduzierung der CO_o-Emissionen und dadurch eine Verbesserung der Qualität der Umwelt ab.

Wenn Sie einen alten Motor mit einem effizienteren austauschen wollen laden Sie die App "Motive Energy Utility" direkt von Playstore und App Store runter um die Energieeinsparung auf Ihr Smartphone, Tablet zu berechnen

Was macht einen Motor leistungsfähiger?

Die hohe Leistungsfähigkeit kann unter verschiedenen Gesichtspunkten betrachtet werden: als Verhältnis zwischen Ausgangsleistung und aufgenommener Leistung oder als Maß der Verluste, die bei der Umwandlung von elektrischer in mechanische Energie entstehen. Aus einer anderen Sichtweise verbrauchen die Motoren mit hohem Wirkungsgrad weniger Energie, um dasselbe Drehmoment auf der Welle zu erzielen.

Ein Motor mit hohem Wirkungsgrad ist im Wesentlichen das Ergebnis genauerer kleinerem Verarbeitungsprozesse, Raum zwischen Stator und Rotor, geringerer Reibung. einem dynamisch ausgewuchteten Rotor und der Verwendung von besserem Material.

Die wichtigsten Punkte bei der Planung sind die Wahl der Wicklung mit einer größeren Anzahl von Windungen oder ein Draht mit größerem Durchmesser sowie Blech mit einem geringeren Verlustkoeffizienten.

Die Motive-Motoren bestehen aus Silizium-Elektroblech FeV anstelle des herkömmlichen und häufig verwendeten Eisenblechs Fe PO1.

Elektrobleche haben zudem sehr niedrige Verlustwerte W/ka.

Geringere spezifische Verluste bedeuten einen geringeren Bedarf an magnetisierendem Strom, um dieselbe Leistung und dasselbe Drehmoment zu erzielen (und daher auch einen geringeren Wärmeverlust im Paket).

EG-MARKIERUNG

Niederspannungsrichtlinie (LVD) 14/35/EG

Richtlinie über die elektromagnetische Verträglichkeit (EMV) 14/34/EG

Ökodesign-Richtlinie für energieverbrauchsrelevante Produkte (ErP) 09/125/EG

Anm.: Elektromotoren sind ausdrücklich vom Anwendungsbereich der Maschinenrichtlinie (MD) 2006/42/EG ausgenommen (Art. 1. Absatz 2)

Die CE-Kennzeichnung wird von Motive als sichtbares Zeichen der Konformität des Produkts mit den Anforderungen der oben angeführten Richtlinien verwendet. Um dieses Ziel zu gewährleisten, erfüllen die Motoren der Serie Delphi folgende Produktnormen:

EN 60034-1 - EN 60034-5 - EN 60034-6 - EN60034-7 -EN60034-8 - EN60034-2-1 - EN60034-30-1 - EN50347 - FN61000-6-4 - FN 60034-9 - FN 60034-25

DELPHI EX

II 2G Ex eb IIC T3, T4, T5, T6 Gb II 2D Ex tb IIIC T85°C...T120°C Db

ATEX ist der herkömmliche Name für die Richtlinie 14/34/EG der Europäischen Union zur Regelung der Geräte zur Verwendung in explosionsgefährdeten Bereichen.

Die Motoren von Motive der Serie Delphi Ex unterscheiden sich von den Standard-Delphi-Motoren dadurch, dass sie wie die Motive "Ex" -Getriebe in ATEX-Zonen 1, 2, 21 und 22 eingesetzt werden können. In der Tat sind die Motive Motoren der Serie Delphi Ex für die Zonen nach den Normen EN 60079-0 - EN 60079-7 - EN 60079-31 von der entsprechenden Behörde zertifiziert.

Ihre Zertifizierung deckt alle Betriebsarten von S1 bis S9 ab und erlaubt den Betrieb auch mit Frequenzumrichtern jeder Marke. In diesem Fall stellt Motive auch seine Ex-Zwanasbelüftuna zur Verfügung, die ebenfalls für alle Staub- und Gasarten der

Kategorie 2 geeignet ist.

Die Delphi Ex-Serie ist auch in einer Version für Umgebungen mit Temperaturen bis zu 60 °C erhältlich, wobei dennoch ein Dauerbetrieb S1 und eine maximale Innentemperatur von 135 °C (T4) erhalten bleiben.

Dank des sehr hohen Wirkungsgrades und der geringen Verluste wird die Oberflächentemperatur im S1-Betrieb auf nur 120 °C begrenzt. Bei intermittierendem Betrieb kann sie sogar auf 100 °C oder 85 °C gesenkt werden.

Ebenso kann die Innentemperatur für Gase von T4 (135 °C) auf T5 (100 °C) und T6 (85 °C) reduziert werden.

Auf unserer Website finden Sie auch die EAC-Ex-Zertifizierung für eurasische Länder, die NEPSI-Ex-Zertifizierung für China sowie die Ex-Zertifizierung für die Ukraine.

Hinweis: Wie im TÜV-Zertifikat angegeben, zeigt der Konfigurator auf der Motive-Website für jeden Motor, jede Konfiguration und Temperaturklasse:

- die minimalen und maximalen Umgebungstemperaturen
- die zugelassenen Temperaturklassen für Gase

CERTIFICAT

.

CCC KENNZEICHNUNG

Die elektrische Sicherheit und der Wirkungsgrad von Motive-Motoren, mit und ohne Bremse, wurden von der CQC-Zertifizierungsstelle gemäß den chinesischen

Gesetzen nach (((())-zertifiziert, sodass sie nach China exportiert werden können.

гпг

2024000401000707

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ ДЕКЛАРАЦИЯ О СООТВЕТСТВИИ

thl	енной ответственностью ТІРИВОД ГРАНД РЕДУКТОР" — по ответственностью ТІРИВОД ГРАНД РЕДУКТОР"
Заявитель Общество с ограниче	нной ответственность: в осуществления деятельности: Российская Федерация, Смоленская сущив Багратиона, дом 4, офис 46, основной государственный почты:
Место нахождения и адрес место область, 214004, город Смоленс	 осуществления деятельности: Российская осмугарственный к, удина Багратиона, дом 4, офис 46, основной государственный кдужения багратиона, дом 2015 г. дом. 201

в лице Директора Шелеств Алекандра Иосифовича заявляет, что Электрольнители (могор-редукторы) всинхронные треофативае общепровыванией изявляет, убочее наприжение 20/3080 Молен по призожению № 1, возличаетою листов: 2 иктоговично. Мойте ят. Место должения и адрес места осуществления деятельносу иктогованию продукции; Уа Le Glaeide, 20/3010 Саземейом (Вк.) Италия. Продукции изтолована в состоятеления с Дерективей 20/4/35EU "Низоведи-пное оборудование", кол ТН ВЭД ЕАЭС 8301. Серайный выпуск.

ТР ТС 004/2011 [™]О безопасности низмовольтного оборудования*, утвержден Решением Комиссии

ченного союза от 16 августа 2011 года № 768

Протокола испытаний № 199-04/2020 от 14,04,2020 года, выданного Испытательной даборатори протокова испытании ле 179-04/20/01 14-04-20/01 года, вызыванием изиматальном вабор. Общество с ограниченной ответственностью Ниновационный центр «Колибри», аттегат вокредитации РОСС RU.31857.04I/I/C0.00063, сроком действия до 17.06.2022 года.

Схема декларирования 1д Дополнительная информация

ГОСТ 16264.1-2016 Двигатели асинхронные, Часть 1. Общие технические условия. Срок хран (службы, годности) указан в прилагаемой к продукции товаросопроводительной и/или

атационной документации. атационной документации.

ый номер декстарации о соответствии: ЕАЭС NRU Д-IT.HX37.B.02083/20 Дата регистрации декларации о соответствии: 14.04.2020

EAC KENNZEICHNUNG

Aus der EAC-Konformitätsbescheinigung (EurAsian Conformity) geht hervor, dass Motive-Motoren alle geltenden Vorschriften / technischen Eurasischen Zollunion erfüllen und daher im Hoheitsgebiet der Beitrittsländer werden können (Russland, verkauft Kazachstan, Armenien und Belarus. Kyrgystan).

Kennzeichnung befindet sich folglich auf dem Typenschild der dreiphasigen Motive-Motoren

SCHIFFSMOTOREN ZERTIFIZIERUNG DURCH RINA (ITALIENISCHES SCHIFFSREGISTER)

2015 wurde Motive in das alternative Testprogramm (Zertifikat Nr. 2015 / MI / 01/537) aufgenommen, welches eine schnellere und kostengünstigere Prüfung von dreiphasigen Schiffsmotoren nach RINA-Normen (Zulassungsbehörde Schiffbau) sowohl für hauptsächliche als auch für sekundare Dienstleistungen ermöglicht.

Im Jahr 2019 hat RINA uns auch die Typprüfbescheinigung und deren Freigabetest für Schiffsmotoren zugelassen. In vielen Fällen reicht diese KOSTENLOSE Zertifizierung für den Endkunden aus und vermeidet damit die Notwendigkeit mit den Kosten des RINA-Tests für jede angeforderte Motoreinheit belastet

AINA ist Mitalied der IACS, und entspricht von daher den Richtlinien der 12 Mitalieder der IACS (ABS American Bureau of Shipping; Bureau Veritas, CCS China Classification Society; CRS Croatian Register of Shipping; DNV-GL, IRCLASS Indian Register of Shipping; KR Korean Register of Shipping; Lloyd's Register; ClassNK Nippon Kaiji Kyokai; Polish Register of Shipping; Russian Maritim Register of Shipping)

MOTORENSCHUTZ

Die Schutzvorrichtungen müssen nach den spezifischen Betriebsbedingungen gemäß den Normen EN 60204- 1 gewählt werden.

Atterner Schutz

Schutz vor Überbelastung; dieser Schutz kann durch ein Wärmerelais eingerichtet werden, wodurch ein automatischer Leistungs-

Wählschalter gesteuert wird.

Schutz gegen Überstrom durch Elektrorelais, welches einen automatischen Leistungs-Wählschalter kontrolliert oder durch Schmelzsicherungen; diese müssen bei blockiertem Rotor des Motors

 bei blockiertem Rotor des Motor auf den Strom geeicht werden.

Schutz gegen Übergeschwindigkeit, wenn die Anwendung dies benötigt, z.B. falls die mechanische Belastung den Motor zieht und dies zu einem Risikofaktor werden könnte.

Schutz, wenn besondere Betriebsbedingungen in Synchronie mit anderen Maschinen oder Maschinenteilen es verlangen, gegen die Unterbrechung der Spannung oder die Verringerung derselben durch ein Minimalspannungs-Relais, welches einen automatischen Leistungs-Wählschalter kontrolliert.

Interner thermischer Schutz:

(CEI 2-3 / IEC 34-1)

Die elektrischen Schutzvorrichtungen an der Stromleitung des Motors könnten unzureichend sein, um vor Überbelastung zu schützen. Wenn e Ventilationsbedingungen sich verschlechtern, überhitzt der Motor, aber der elektrische Zustand ändert

sich nicht. Dies behindert die Schutzvorrichtungen an der Leitung. Als Gegenmaßnahme werden Schutzvorrichtungen an den Wicklungen installiert:

Temperaturschutz PTO

Es handelt sich um eine elektromechanische Vorrichtung, die normaler-

weise geschlossen ist und
sich elektrisch
öffnet, sobald
die Auslösetemperatur
erreicht wird.
Sie stellt sich
automatisch in

den geschlossenen Zustand zurück, wenn die Temperatur unter die Auslösegrenze sinkt.

Termistor PTC

Diese Vorrichtung variiert ihren Widerstand auf rasche Weise, sobald die Eingriffs-temperatur erreicht wird.

Motive Motoren
der Größen 160
bis 355L sind
standardmäßig
mit 3 in die Wicklung eingetauchten PTC-Thermi-

storen ausgestattet.

Vorrichtung PT100

Diese Vorrichtung variiert kontinuierlich und steigend ihren Widerstand in Beziehung auf die Temperatur. Sie eignet sich für die kontinuierliche Temperatur-aufnahme der Wicklungen durch elektronische Geräte.

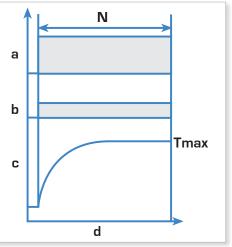
& PT100 Steuerkarte / Schnittstelle

SCHEDAPT kann PTC-Thermistoren lesen und/oder bis zu 3 PT100 Sonden, sowohl für die Wicklung als auch für die Lager

Mit SCHEDAPT können Sie die Motortemperatur ständig überwachen, indem Sie die PT100- und / oder PTC-Temperatursonden im Motor ablesen und einen Relaiskontakt für jeden Ausgang steuern (normalerweise standardmäßig geschlossen, durch Bewegen des entsprechenden Jumpers geöffnet). In Reihe mit der Stromversorgung des externen Netzschützes (max. 125 VAC, 0,5 A / 24 VDC, 1 A) geschaltet, unterbricht diese somit die Stromversorgung des Motors bei einer Alarmtemperatur (130 ° C

ist die Standardeinstellung von Moti-

ve für den PT100, modifizierbar mit


einem Trimmer - Abb. 2, während die Interventionstemperatur des PTCs , die des PTC selber ist). Das einfache und kompakte Gehäuse ermöglicht die Montage auf einer DIN-Schiene. Versorgungsspannung: 5 ÷ 30 VDC max. 100 mÅ

BETRIEBSART

Alle im Katalog gezeigten Motoren sind für Dauerbetrieb S1 Norm IEC 34-1 vorgesehen.

Die verschiedenen, von den Normen beschriebenen Betriebsarten sind:

S1 – Dauerbetrieb: Betrieb bei konstanter Belastungsdauer N, ausreichend zum Erreichen des thermischen Gleichgewichtes.

= Belastung

= Stromverluste = Temperatur

d = Zeit

N = Betriebszeit unter konstanter

Belastung Tmax = erreichte Höchsttemperatur

S2 - Kurzzeithetrieh.

S3 - Periodischer Aussetzbetrieb

S4 - Periodischer Aussetzbetrieb zeitweiliger Betrieb mit Einfluss des Anlaufvorganges.

S5 - Periodischer Aussetzbetrieb mit Einfluss des Anlaufvorganges und elektrischer Bremsung.

S6 - Ununterbrochener periodischer Betrieb.

S7 - Ununterbrochener periodischer Betrieb mit elektrischer Bremsung, die die Erhitzung des Motors beeinflusst.

S8 - Ununterbrochener periodischer Betrieb

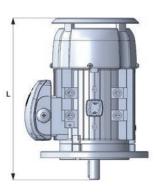
mit Last - und Drehzahländerungen.

S9 - Betrieb mit nichtperiodischen Lastund Drehzahländerungen.

SCHUTZART

Die Art des Schutzes vor ungewolltem Kontakt u./o. Fremdkörpern und Wassereindringen wird auf internationaler Ebene (EN60529) durch eine symbolische Anmerkung ausgedrückt, die aus einer Serie von 2 Buchstaben und 2 Zahlen besteht.

IP sind Bezugsnummern für die Art des Schutzes.


- 1. Num. Schutz der Personen vor Kontakt und Schutz vor Eindringen von festen Fremdkörpern.
- 2. Num. Schutz vor Eindringen von Wasser.

Unsere Standardausführung ist IP55

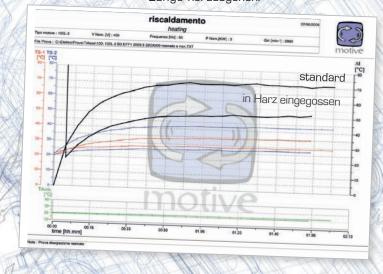
	1° nummer	2° nummer
0	kein Schutz	kein Schutz
1	Schutz gegen das Eindringen von Festkörpern >50mm	Schutz gegen senkrecht fallendes Tropfwasser
2	Schutz gegen das Eindringen von Festkörpern >12mm	Schutz gegen fallendes Tropfwasser bis zu einer Neigung von 15°
3	Schutz gegen das Eindringen von Festkörpern >2,5mm	Schutz gegen fallendes Tropfwasser bis zu einer Neigung von 60°
4	Schutz gegen das Eindringen von Festkörpern >1mm	Schutz gegen allseitiges Spritzwasser
2 SENIEININIAGON -	Schutz gegen schädliche Staubablagerungen	Schutz gegen Strahlwasser aus einer 6,3 mm-Düse mit einem Durchfluss von 12,5 I/Min. aus 3 m Entfernung für die Dauer von 3 Min.
6	vollständiger Schutz gegen Eindringen von Staub*	Schutz gegen wellenartige Wasserbewegungen
7		Schutz gegen Untertauchen bis zu einer Tiefe von 1 Meter über einen begrenzten Zeitraum

REGENSCHUTZDACH

Bei Anwendung im Freien mit Montage in Position V5 - V18 - V1 - V15 (siehe Tabelle S. 17) empfiehlt sich die Montage eines Regenschutzdaches. Diese Ausführung eignet sich auch für Anwendungen in der Textilbranche.

TYP	L
63	215//
71	323
80	369
908	403
90L	428
100	469
112	453
1325	573
132M	613
160M	770
160L	825
180M	915
180L	955
200L	1025
225S	1155
225M	1160
250M	1220
280S	1265
280M	1315
3158	1540
315M	1570
315L	1680
355M	1840
355L	1870
400	2290

TVD I



IN HARZ EINGEGOSSENE MOTOREN

Vollkommen dicht aufgrund des Eintauchens in Zweikomponenten-Reaktionsharz, sind sie die ideale Lösung für Umgebungen mit hohem Feuchtigkeitsgehalt (z.B. Waschsysteme, Autowaschanlagen und chemische Anlagen). Die auf diese Weise imprägnierten Wicklungen bieten viele Vorteile wie bessere Wärmeableitung und daher größere Lebensdauer.

Die ideale Kombination ist die in Harz eingegossene Klemmenleiste. Je nach Kundenbedürfnis, kann die Klemmenleiste auch vollständig in Harz getaucht werden und mit einem bereits verdrahteten Kabel herausgenommen werden.

Man kann auch die Klemmenleiste und den Klemmendeckel abnehmen, das Gehäuse mit einer abgedichteten Platte verschließen und mit einem Kabel in der gewünschten Länge herausgehen.

BETRIEBSBEDINGUNGEN

FEUCHTIGKEIT:

Die Motoren können in Umgebungen mit einer relativen Feuchtigkeit zwischen 30 und 95% (ohne Kondensatbildung) betrieben werden.

Schädliche Auswirkungen infolge von ge-

legentlicher Kondensatbildung müssen durch eine entsprechend geplante Ausstattung vermieden werden. Wenn erforderlich, müssen zusätzliche Maßnahmen ergriffen werden (Motive bietet zum Beispiel Heizelemente zum Schutz gegen Kondensatbildung, Drainagebohrungen oder vollständig in Harz eingegossene Wicklungen an).

HÖHE UND TEMPERATUR:

Die angegebenen Leistungen verstehen sich für Motoren, mit Nennleistung über 0,6 kW (IEC 34-1), deren normale Anwendung in einer Höhe von max. 1000 m ü. d. Meeresspiegel erfolgt und einer Temperatur zwischen 15° und + 400° (+100°C für die Serie Delfire). Bei von den Angaben, abweichenden Betriebsbedingungen (Höhe oder Temperaturen darüber) verringert sich die Leistung um 10% pro 10° Übertemperatur und um 8% pro 1000 Meter Höhe mehr.

Es ist nicht notwendig, die Nennleistung zu verringern, falls bei einer Höhe zwischen 1000 m und 2000 m die maximale Temperatur von 30° nicht überschritten wird oder falls bei einer Höhe zwischen 2000 und 3000 m, die 19° nicht überschritten werden.

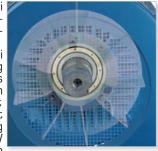
SPANNUNG - FREQUENZ:

Eine Variierung der Spannung von ±

10% des Nennwertes ist annehmbar.

Bei dieser Unterbrechung liefern unsere Motoren die Nennleistung.

Im Dauerbetrieb, im angegebenen Spannungsbereich, kann eine Erhöhung der Übertemperatur von max. 10°C max. erreicht werden.

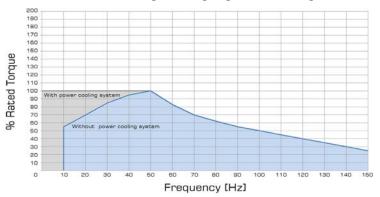

IISOLIERUNG:

Die Wicklung ist mit einem Kupferdraht mit doppelter, tropenfester Lackierung Grad 2 in der Klasse H und einer Nutisolierung der Klasse F ausgeführt. Dadurch ist ein hoher Schutz gegen elektrische, thermische und mechanische Beanspruchungen gewährleistet.

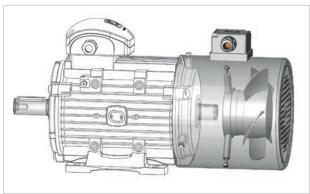
Die Isolierung zwischen Kupfer und Nuteisen wird durch eine Folie hergestellt, welche die Spulenseite komplett umwickelt. Die Standardisolierung ist durch eine weitere Trennfolie zwischen den Phasen verstärkt, die die Aufgabe hat, den Motor vor den hohen Spannungsspitzen zu schützen,

die normalerweise bei Umrichterspeisung auftreten.

B e i Verwendung e i n e s Umrichters in Verbindung mit Motoren mit einer Leistung von über 75kW empfiehlt sich

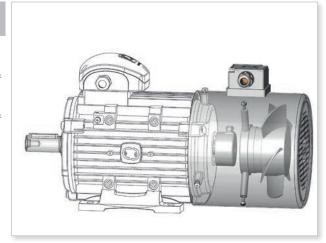

der Einbau eines abgedichteten Lagers auf der Gegenseite der Übertragung. Diese Vorrichtung öffnet den zwischen dem Rotor und dem Motorgehäuse bestehenden elektrischen Kreis und vermeidet dadurch, dass die Wellenströme durch die Lager dringen. Anderenfalls könnten sich deren Wälzkörper und Laufbahnen frühzeitig abnutzen.

Die Höchsttemperaturen (Tmax) der von der Norm EN60034-1 festgelegten Isolierklassen sind im Kapitel "technische Daten" angegeben. Die Delphi-Motoren sind mit einer weiten Sicherheitsspanne gegen eventuelle Überlastungen gebaut, weil sie

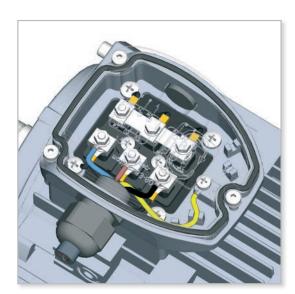

einen Wärmewert bei Nennleistung haben, der weit unter der von ihrer Isolierklasse unterstützten Grenze liegt. Dieser Umstand erhöht die Lebensdauer des Motors erheblich. Diese Werte von ΔT sind in den Leistungstabellen in diesem Katalog angegeben (Für weitere Details zu den ΔT wird auf das Kapitel "technische Details" verwiesen).

KÜHLUNG MOTIVE

Die Kühlung von Motive-Motoren ist dreiphasig 400/50 440/60, IP55 mit getrennter Klemmleiste. Für Anwendungen mit einem Nenn- Drehmoment unter der Geschwindigkeit von 50Hz des Motors, ist die Montage einer geeigneten Kühlung erforderlich.



Auf Wunsch sind einphasige Kühlsysteme, ATEX-Ausrichtung, 24 Vdc und Sonderspannungen lieferbar.

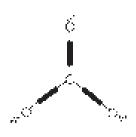

ENCODER

Motoren mit inkrementellen, absoluten, Profinet-, Profibus- und ATEX-Encoder sind auf Anfrage erhältlich. In diesem Fall kann man die Außenkühlung erhalten, die mit Halterungen auf dem Ventilatorschutzgehäuse angebracht ist.

ANSCHLUSS-SCHEMEN

Die Wicklungen der Motive-Dreiphasen-Motoren können stern- oder dreieckförmig angeschlossen werden.

STERNANSCHLUSS

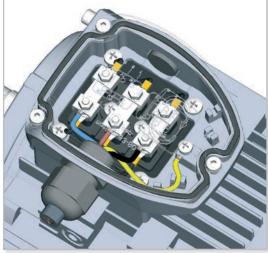

Den Sternanschluss erhält man, indem die Endungen W2, U2, V2 miteinander verbunden werden und die Endungen U1, V1,

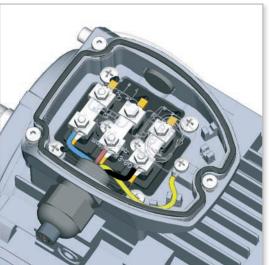
W1 gespeist werden.
Der Phasenstrom Iph und die Uph Spannung sind

lnh = ln

 $\dot{U}ph = Un / 1.74$

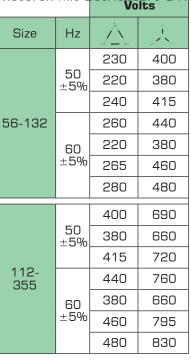
wobei In der Leitungsstrom ist und Un die Leitungsspannung bezüglich des Sternanschlusses ist




DREIECK-ANSCHLUSS

Den Dreieckanschluss erhält man, indem das Ende einer Phase an den Anfang der darauf folgenden Phase angeschlossen wird. Der Phasenstrom Iph und die Phasenspannung Uph sind:

Der Phasenstrom iph und die Phasenspannung Uph sind: lph = In / 1,74
Uph = Un
wobei In und Un sich auf den Dreieckanschluss beziehen.
Der Stern-Dreieck-Start ist der einfachste Weg den Strom
und das Startdrehmoment zu reduzieren. Die Motoren, deren Nennspannung bei Dreieck-Anschluss der Netzspannung
entsprechen, können mit dem Stern-Dreieck Verfahren gestartet werden.



For further wiring schemes with brake, 1PH, VFD, etc, download the manual from https://www.motive.it/en/manuali.php

Folgende Spannungen und Frequenzen befinden sich innerhalb der Standardinnernaid der Speisungseinheit aller Motive-DREIPHASEN-Motoren mit Betriebsart S1: Volts

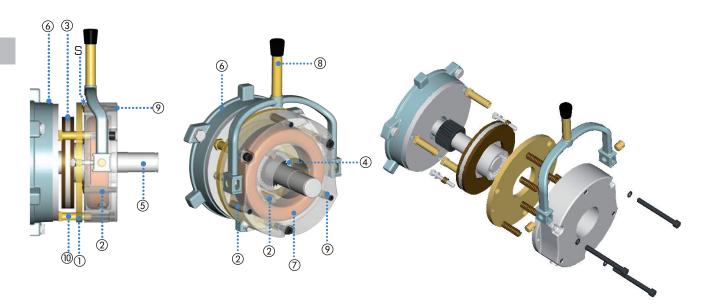
SELBSTHALTENDE DREIPHASENMOTOREN SERIE DELPHI AT...

Die selbsthaltenden Motoren der Serie Delphi ATDC, AT24 und ATTD arbeiten mit wechselstromgespeisten Federdruckbremsen, die fest mit einem Schild aus Gusseisen am Vorderteil des Motors verbunden sind.

In den Motoren sind einige Vorrichtungen eingebaut, die bei anderen Marken normalerweise als Optionals vorkommen, wie z.B.:

- Hebel für die manuelle Auslösung, der die Bremslüftung und die Manovrierfähigkeit ohne Speisung ermöglicht.
- Thermoschutzvorrichtungen im Wicklungssystem aller Baugrößen eingebettet.
- Einfache getrennte Speisung der Bremse bei umrichtergespeisten Motoren. Die Gleichrichter der Motoren ATDC und ATTD verfügen zu diesem Zweck über eine Klemmenleiste, während die AT24-Motoren mit 24V-Bremsen ausgestattet sind, um direkt durch die getrennten 24V-Ausgänge gespeist werden zu können, die bei den meisten Umrichtern vorhanden sind.

Auf Anfrage können die Bremsen geräuscharm gestaltet werden, damit sie in speziellen Umgebungen, wie zum Beispiel Theatern, eingesetzt werden können.


IE2, high efficiency class IEC 60034-30-1

IE3, premium efficiency class IEC 60034-30-1

IE4, super premium efficiency class IEC 60034-30-1

				ATDC				ATDC AT24	ATTD			
IEC TYP	Max. statisches Bremsmoment	Dauer Leerbremsung Standardausführung	Dauer Leerbremsung TA-Version	Gleichrichterspeisung	Bremsenspei sung	Bremsleistung	Max. statisches Bremsmoment	Min. statisches Bremsmoment	Dauer Leerbremsung	Bremsleistung	extra Kg bei std	extra Kg bei std
1115	[Nm)	[Sek]	[Sek]	[Vac]	[Vdc]	W	[Nm]	[Nm]	[Sek]	W		
AT 63	4,5	0,15	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	20	4,5	4,0	0,06	20	+4	+7,5
AT 71	8,0	0,15	<0,05	220-280 (opt. 380-480)			4,5	4,0	0,06	20	+5	+9
AT80	12,5	0,20	<0,05	220-280 (opt. 380-480)			10,0	9,0	0,09	25	+5,5	+10
AT90	20,0	0,25	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	45	16,0	12,0	0,11	45	+6	+11
AT 100	38,0	0,30	<0,05	220-280 (opt. 380-480)	99-126 (opt. 171-216)	60	32,0	28,0	0,14	60	+7	+12,5
AT112	55,0	0,35	<0,05	380-480	171-216	65	60,0	55,0	0,15	65	+10	+19
AT132	90,0	0,40	<0,05	380-480	171-216	90	90,0	80,0	0,16	85	+12	+23
AT160	160,0	0,50	<0,05	380-480	171-216	110	160,0	130,0	0,21	105	+22	+42
AT 180	250,0	0,50	<0,05	380-480	171-216	130					+32	+62
AT200	420,0	0,50	<0,05	380-480	171-216	140					+40	+77
AT225	450,0	0,50	<0,05	380-480	171-216	160					+52	+100
AT250	550,0	0,50	<0,05	380-480	171-216	170					+80	+155
AT280	900,0	0,50	<0,05	380-480	171-216	360					+106	+209
ATTD	ATTD= ATDCx2					ATTD= ATDCx2						

ATDC

- Bewegliche Verankerung
- (2) Federn
- ③ Bremsscheibe
- 4 Träger
- ⑤ Motorwelle
- 6 Motorflansch
- Spule
- 8 Entblockungshebel
- Einstellungsnocken
- (10) Gewindebuchse
- 11 Drehknopf
- (2) Plattenanschluss
- S Luftspalt

BREMSBESCHREIBUNG

Die Motoren der Serie Delphi ATDC sind mit einer elektromagnetischen Bremse mit Negativbetrieb ausgestattet, deren Bremsfunktion bei Ausfall der Stromzuführung erfolgt. Die Isolierungsklasse dieser Bremsen ist F. Die Reibungsdichtung (Reibungsbelag) enthält kein Asbest, gemäß den neuesten Richtlinien der Europäischen Gemeinschaft bezüglich Hygiene und Sicherheit am Arbeitsplatz. Der Gleichrichter ist vom Typ mit Relais mit Schutzvaristoren am Eingang und am Ausgang. Alle Bremskörper sind durch Lackierung u./o. Warmverzinkung gegen Witterung geschützt. Die am meisten durch Abnutzung gefährdeten Teile werden in besonderer Atmosphäre behandelt. was ihnen eine hohe Lebensdauer verleiht.

BREMSBETRIEB

Wenn die Stromzuführung unterbrochen wird, gibt die Relaisspule ⑦, da sie nicht mehr gespeist wird, keine Magnetkraft mehr ab, um die bewegliche Verankerung ①, zu halten, welche, von den Druckfedern ②, angetrieben, die Bremsscheibe ③ auf einer Seite an den Motorflansch ⑥, presst, auf der anderen auf dieselbe Verankerung, womit die Bremsfunktion einsetzt.

AT24

EINSTELLUNG



ATTD

EINSTELLUNG

Es gibt zwei verschiedene Einstellmöglichkeiten (Download Technisches Handbuch unter https://www.motive.it/en/manuali.php)

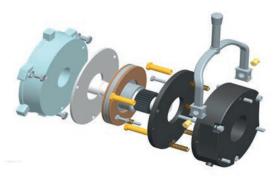
Die Einstellung des Bremsmoments erfolgt durch die Einstellstifte ③ (ATDC- und ATTDMotoren) oder den Drehknopf ⑪ (Motoren AT24). Das Bremsmoment ist auf den Maximalwert vor-eingestellt.

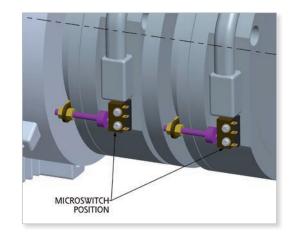
Die Bremseinstellung ist nur von Größe 90L bis Größe 280 möglich.

ENTBLOCKUNG

IΡ

Der Entblockungshebel ist Teil der serienmäßigen Ausstattung, er kann schraubenartig einfach durch Drehen abmontiert werden. Die Motoren mit Tandembremse der Serie ATTD von der Bauaröße 180 bis zur Bauaröße 280 sind mit einem Entblockungs- hebel ausgestattet.

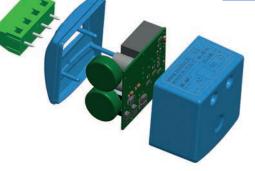

Die Bremsen AT... sind aus elektrischer Sicht mit Schutzart IP55 geschützt, doch mechanisch ist für den Einsatz im Außenbereich ein Schutz vor Rost und Verklebung der Scheibe aufgrund von Feuchtigkeit erforderlich. Es ist auch in den Versionen IP65. IP56 und IP66 verfügbar.


BREMSKONTAKTSCHEIBE AUS EDELSTAHL

Auf Anfrage kann, wenn Feuchtigkeit und intermittierender Betrieb eine frühzeitige Oxidation der Kontaktfläche zwischen dem hinteren Schild und der Bremsscheibe verursachen, eine Edelstahlabdeckung am hinteren Schild im Bereich des Kontakts mit dem Bremsbelag angebracht werden.

MIKROSCHALTER ZUR ERFASSUNG DER BREMSENPOSITION

Optional.

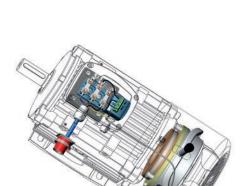


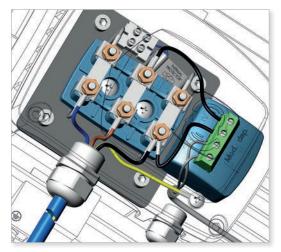
VERSORGUNG

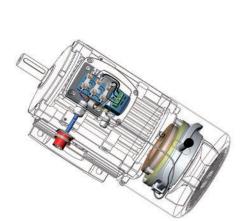
Die gleichstromgespeisten Motive Bremsen der Serie ATDC werden über einen Spannungsgleichrichter versorgt, der im Klemmendeckel installiert ist.

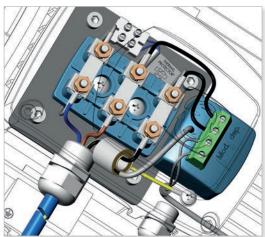
Die folgende Tabelle enthält die Gleichrichterspeisung und Bremsenspeisung der Baureihe ATDC: ATDC 63-100 ATDC 7/p2-280 eing 60en48 Volt

Wenn nicht anders schriftlich bei Bestellung vereinbart, liefert Motive die Motoren der Baureihe ATDC mit bereits auf der Hauptklemme des Motors mittels zweier Brücken (Abb. 1 und 2) angeschlossenem Gleichrichter, damit die direkte Einspeisung des Motors gleichzeitig auch auf die Bremse übertragen wird.

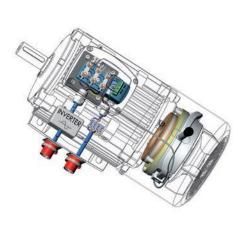

Im Falle von Motorspeisung über Inverter (Abb. 3), über Spezialspannung, oder im Falle eines Anlaufs mit reduzierter Spannung oder bei Vorliegen von Belastungen mit einer möglichen Trägheitsbewegung, wie hochgehobene Lasten (in diesem Falle kann bei Ausschalten der Versorgung des Motors, die Last den Motor bewegen. worauf dieser wie ein Generator auf den Gleichrichter der Bremse und somit auf die Bremse wirkt und deren Blockierung verhindert), müssen die von Motive vorgesehenen Brücken geöffnet und der Gleichrichter separat versorgt werden (Kap. "Anschlusspläne". Abb. 3 und 4).


Mithilfe des Gleichrichters in der Version TA wird das Problem der Trägheitslast ohne die erforderliche separate Versorgung des Gleichrichters (Abb. 2) gelöst. Dieser exklusive Gleichrichter bietet folgende Innovationen:


- Doppelte Halbwellen-Technologie.
- Spezielle, vibrationssichere 6-Ampere-Relais (wie die in Ducati-Rennmotorrädern verwendeten).
- Lichtbogenresistente Kontakte aus Silberlegierung.
- Relaissystem anstelle des üblichen MOSFET-Systems, dadurch widerstandsfähiger gegen Spannungsspitzen, auch bei Impulsen.
- Ein integriertes Stromüberwachungssystem, das die Stromsinuswelle und die Umschaltzeit des Relais kontrolliert.


Was ist der Vorteil?

Der Gleichrichter ist normalerweise das "Gehirn" und der empfindlichste Punkt eines jeden DC-Bremsmotors. Dieser Gleichrichter ist wesentlich widerstandsfähiger gegen Störungen aus dem Stromnetz als von den europäischen EMV-Richtlinien für industrielle Umgebungen gefordert; er ist vibrationsfester und schneller.



ATDC/\ (400Vac/180Vdc Gleichrichter separater Anschluss) + Inverter (Abb. 3)

+ 400Vac/180Vdc Gleichrichter separater Anschluss (Abb. 4)

KONFIGURATOR

Konfigurieren Sie, mit diesem automatischen Berater was Sie benötigen, und erhalten Sie CAD-Dateien und Datenblätter

Der Motive Konfigurator ermöglicht Ihnen, unsere Produkte nach Ihren Wünschen zu zeichnen und zu konfigurieren.

Ebenso können CAD Zeichnungen in 2D/3D und Datenblätter als PDF heruntergeladen werden.

Suche nach Leistung

Wenn Sie nicht sicher sind, welche Produktekombination die richtige für Sie ist, können Sie die von Ihnen gewünschten Daten eingeben (bspw. Ausgangsdrehmoment, Endgeschwindigkeit, Anwendung).

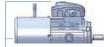
Der Konfigurator arbeitet dann als Berater. Er erstellt Ihnen eine Liste von anwendbaren Produkt-Konfigurationen.

Danach können Sie technische Datenblätter sowie 2D/3D Zeichnungen für jede Konfiguration herunterladen.

Suche nach Produkt

Zum Erstellen von Datenblättern und 2D/3D Zeichungen, wenn Sie die Produkt-Konfiguration schon kennen.

freien Zugang ohne Login http://www.motive.it/configuratore.php


KONSTRUKTIONSFORMEN UND ABMESSUNGSTABELLEN

KONSTRUKTIONSFORMEN UND MONTAGEPOSITIONEN (IEC 34-7)

MOTO! FÜSS	REN MIT SEN B3	MOTOREN MIT FLANSCH B5	MOTOREN MIT FLANSCH B14
IM1051 (IM B6)	IM1001 (IM B3)	IM3001 (IM B5)	IM3601 (IM B14)
IM1061 (IM B7)	IM1011 (IM V5)	IM3011 (IM V1)	IM3611 (IM V18)
IM1071 (IM B8)	IM1031 (IM V6)	IM3031 (IM V3)	IM3631 (IM V19)
B3/B5 IM2001 (IM B35)	B3/B14 IM2101 (IM B34)	V1/V5 IM2011 (IM V15)	V3/V6 V3/V6 V3/V6 V3/V6 V3/V6

 DC/A	TTD

110	AIDU	/AIIL	٠		АП	AIIU/د	IE2	IE3/IE4									В3			B 5				B14					B5R / B14B							
	TYP	POLE	AD	AD	Н	KK	L	L	D	DH	Е	Q	F	G	A	AB	В	С	K	М	N	Р	R	S T	М	N	Р	R	S	Т	М	N	P	R	S	Т
	56	2-8	102	-	56	M16	198	-	9	M4x12	20	3	3	7,2	90	111	71	36	5,8	100	80	120	0	7x4 3	65	50	80	0	M5	2,5	-	-	-	-	-	-
	63	2-8	107	116	63	M20	215	-	11	M4x12	23	3	4	8,5	100	123	80	40	7	115	95	140	0 1	0x4 3	75	60	90	0	M5	2,5	100	80	120	0	M6	2,5
	71	2-8	119	124	71	M20	244	-	14	M5X12	30	3	5	11,0	112	138	90	45	7	130	110	160	0 1	0x4 3,	5 85	70	105	0	M6	2,5	115	95	140	0	M8	3,0
	80	2-8	130	139	80	M20	283	283	19	M6X16	40	3	6	15,5	125	157	100	50	10	165	130	200	0 1	2x4 3,	5 100	80	120	0	M6	3,0	130	110	160	0	M8	3,5
	905	2-8	145	146	90	M20	310	330/ 330	24	M8X19	50	5	8 2	20,0	140	173	100	56	10	165	130	200	0 1	2x4 3,	5 115	95	140	0	M8	3,0	130	110	160	0	M8	3,5
	90L	2-8	145	146	90	M20	338	358/358	24	M8X19	50	5	8 8	20,0	140	173	125	56	10	165	130	200	0 1	2x4 3,	5 115	95	140	0	M8	3,0	130	110	160	0	M8	3,5
	100	2-8	157	161	100	M20	373	393/393	28	M10X22	60	5	8 8	24,0	160	196	140	63	12	215	180	250	0 1	5x4 4	130	110	160	0	M8	3,5	165	130	200	0 1	Л10	3,5
1	12M	2-8	177	177	112	M25	390	410/410	28	M10X22	60	5	8 2	24,0	190	227	140	70	12	215	180	250	0 1	5x4 4	130	110	160	0	M8	3,5	165	130	200	0 1	Л10	3,5
1	325	2-8	197	195	132	M32	460	480	38	M12X28	80	5	10	33,0	216	262	140	89	12	265	230	300	0 1	5x4 4	165	130	200	0	M1C	3,5	215	180	250	0 1	Л10	4,0
1	32M	2-8	197	195	132	M32	496	516	38	M12X28	80	5	10	33,0	216	262	178	89	12	265	230	300	0 1	5x4 4	165	130	200	0	M1C	3,5	215	180	250	0 1	Л10	4,0
1	60M	2-8	255	255	160	2xM40	613	613	42	M16X36	110	5	12	37,0	254	320	210	108	15	300	250	350	0 1	9x4 5	215	180	250	0	M12	4,0	265	230	300	0 1	4x4	5,0
1	160L	2-8	252	252	160	2xM40	708	708	42	M16X36	110	5	12	37,0	254	320	254	108	15	300	250	350	0 1	9x4 5	215	180	250	0	M12	4,0	265	230	300	0 1	4x4	5,0
1	80M	2-8	270	270	180	2xM40	730	730	48	M16X36	110	8	14	42,5	279	355	241	121	15	300	250	350	0 1	9x4 5												
1	180L	2-8	270	270	180	2xM40	780	780	48	M16X36	110	8	14	42,5	279	355	279	121	15	300	250	350	0 1	9x4 5												
2	200L	2-8	303	303	200	2xM50	771	771	55	M20X42	110	12	16	49,0	318	395	305	133	19	350	300	400	0 1	9x4 5												
2	2255	2-8	312	312	225	2xM50	815	815	60	M20X42	140	12	18	53,0	356	435	286	149	19	400	350	450	0 1	9x8 5												
2	25M	2	312	312	225	2xM50	820	820	55	M20X42	110	12	16	49,0	356	435	286/311	149	19	400	350	450	0 1	9x8 5												
2	25M	4-8	312	312	225	2xM50	850	850	60	M20X42	140	12	18	53,0	356	435	286/311	149	19	400	350	450	0 1	9x8 5												
2	250M	2	355	355	250	2xM63	910	910	60	M20X42	140	12	18	53,0	406	490	349	168	24	500	450	550	0 1	9x8 5												
2	250M	4-8	355	355	250	2xM63	910	910	65	M20X42	140	12	18	58,0	406	490	349	168	24	500	450	550	0 1	9x8 5												
2	280S	2	398	398	280	2xM63	985	985/ 985	65	M20X42	140	12	18	58,0	457	550	368	190	24	500	450	550	0 1	9x8 5												
2	2808	4-8	398	398	280	2xM63	985	985/985	75	M20X42	140	12	20	67,5	457	550	368	190	24	500	450	550	0 1	9x8 5												
2	280M	2	398	398	280	2xM63	1035	1035/1035	65	M20X42	140	12	18	58,0	457	550	368/419	190	24	500	450	550	0 1	9x8 5												
2	280M	4-8	398	398	280	2xM63	1035	1035/1035	75	M20X42	140	12	20	67,5	457	550	368/419	190	24	500	450	550	0 1	9x8 5												
3	315S	2	540	-	315	2xM63	1160	1160/ 1160	65	M20X42	140	15	18	58,0	508	630	406	216	28	600	550	660	0 2	4x8 6												
3	315S	4-8	540	-	315	2xM63	1270	1270/1270	80	M20X42	170	15	22	71,0	508	630	406	216	28	600	550	660	0 2	4x8 6												
3	15M	2	540	-	315	2xM63	1290	1290/ 1290	65	M20X42	140	15	18	58,0	508	630	457	216	28	600	550	660	0 2	4x8 6												
3	15M	4-8	540	-	315	2xM63	1325	1325/1325	80	M20X42	170	15	22	71,0	508	630	457	216	28	600	550	660	0 2	4x8 6												
3	315L	2	540	-	315	2xM63	1320	1320/1320	65	M20X42	140	15	18	58,0	508	630	508	216	28	600	550	660	0 2	4x8 6												
3	315L	4-8	540	-	315	2xM63	1350	1350/1350	80	M20X42	170	15	22	71,0	508	630	508	216	28	600	550	660	0 2	4x8 6												
3	855M	2	655	-	355	2xM63	1500	1500/ 1500	75	M20X42	140	15	20	67,5	610	730	560/630	254	28	740	680	800	0 2	4x8 6												
3	855M	4-8	655	-	355	2xM63	1530	1530/ 1530	95	M20X42	170	15	25 8	86,0	610	730	560/630	254	28	740	680	800	0 2	4x8 6												
3	355L	2	655	-	355	2xM63	1500	1500/ 1500	75	M20X42	140	15	20	67,5	610	730	560/630	254	28	740	680	800	0 2	4x8 6												
3	355L	4-8	655	-	355	2xM63	1530	1530/1530	95	M20X42	170	15	25 8	86,0	610	730	560/630	254	28	740	680	800	0 2	4x8 6												

Die technischen Daten der Serie Delfire sind auf Anfrage bei unserem Technischen Büro erhältlich.

		SV IE2	SV IE3/IE4	ATDC AT24	ATDC AT24 IE3/IE4	ATDC+DC AT24+DC	ATDC+DC AT24+DC IE3/IE4	ATTD	ATTD IE3/IE4	ATTD+	ATTD+ SV IE3/IE4
TYP	POLE	L	L	L	L	L	L	L	L	L	L
56	2-8	-	-	-	-	-	-	-	-	-	-
63	2-8	301	-	276	-	401	-	321	-	438	-
71	2-8	341	-	300	-	442	-	365	-	497	-
80	2-8	388	-	340	-	509	-	417	-	560	-
908	2-8	420	440/ 440	385	411/ 411	566	592/ 592	465	491/ 491	577	603/ 603
90L	2-8	445	465/465	410	436/436	591	617/ 617	490	516/516	602	628/628
100	2-8	483	503/ 503	450	474/ 474	621	645/645	488	512/ 512	647	671/ 671
112M	2-8	525	545/545	475	505/ 505	668	698/698	563	593/ 593	693	723/ 723
1325	2-8	590	610	557	588	765	796	640	671	795	826
132M	2-8	625	645	590	621	803	834	677	708	832	863
160M	2-8	765	765	720	-	1009	-	820	-	929	-
160L	2-8	862	862	771	-	1104	-	882	-	1033	-
180M	2-8	860	860	847	-	990	-	995	-	1140	-
180L	2-8	910	910	888	-	1038	-	1044	-	1188	-
200L	2-8	973	973	890	-	1013	-	1050	-	1178	-
2258	2-8	955	955	935	-	1090	-	1115	-	1351	-
225M	2	955	955	935	-	1090	-	1115	-	1345	-
225M	4-8	985	985	965	-	1120	-	1145	-	1375	-
250M	2	1045	1045	1075	-	1211	-	1285	-	1466	-
250M	4-8	1045	1045	1075	-	1211	-	1285	-	1466	-
2805	2	1105	1105/1105	1175	-	1274	-	1355	-	1444	-
2805	4-8	1105	1105/1105	1175	-	1274	-	1355	-	1444	-
280M	2	1160	1160/1160	1230	-	1329	-	1410	-	1499	-
280M	4-8	1160	1160/1160	1230	-	1329	-	1410	-	1499	-
315S	2	1400	1400/1400								

315S

315M

315M

315L

315L

355M

355M

355L

355L

4-8

2

4-8

2

4-8

2

4-8

2

4-8

1430

1500

1530

1500

1530 1740

1770

1740

1770

1430/1430

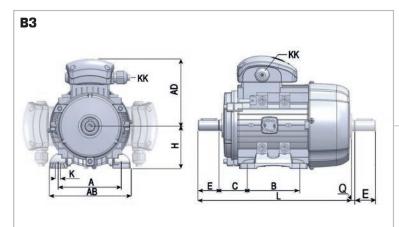
1500/1500

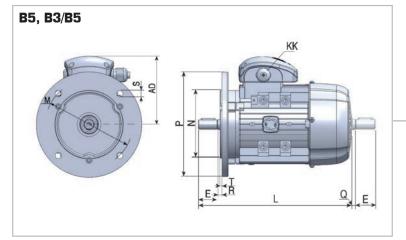
1530/**1530**

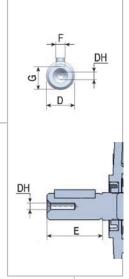
1500/1500

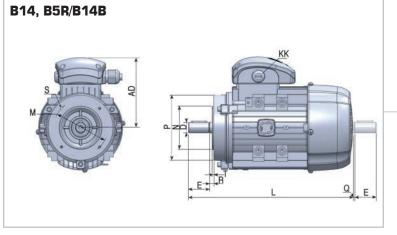
1530/1530

1740/**1740**

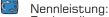

1770/**1770**


1740/1**740**


1770/1770



Auf unserer Internet-Seite können Sie die Zeichnungen (2D+3D) downloaden



TECHNISCHE DATEN

Die technischen elektrischen Eigenschaften sind in den in Folge angeführten technischen Leistungstabellen aufgelistet. Um die Inhalte zu verstehen, werden hier einige allgemeine Begriffe näher erörtert:

Es ist die an der Welle gemessene mechanische Leistung, ausgedrückt nach den neuesten Richtlinien des internationalen Komitees in Watt oder Multiplen (Woder KW). Im technischen Bereich wird die Leistung allerdings noch weitgehend in Pferdestärken (HP) ausgedrückt.

Die in Volt ausgedrückte Spannung, an den Motorklemmen gemäß den folgenden Tabellen.

Frequenz:

In diesem Katalog beziehen sich alle technischen Daten auf mit 50 Hzgewickelte Dreiphasen-Motoren. Diese können auch mit 60 Hz gespeist werden, dabei sind die Multiplikations-Koeffizienten der Tabelle zu beachten:

Nennstrom:

In ist der Nennstrom, ausgedrückt in Ampere, der vom Motor absorbiert wird.wenn dieser durch Nennstrom Vn (V) gespeist wird und Nennleistung Pn (W) abaibt, er wird folgendermaßen berechnet:

$$ln = \frac{Pn}{\sqrt{3} \cdot V_n \cdot \eta \cdot \cos\varphi} (A)$$

In den folgenden Leistungstabellen ist der Nennstrom auf 400 V -Spannung bezogen. Bei anderen Spannungen kann der Strom umgekehrt proportional zum Verhältnis der Spannungen erfasst werden. Z.B.:

		J. C. C.	Miles and September 1		
Volt	230	380	400	440	690
In	1.74	1.05	1.00	0.91	0,64

Targa Volt bei 50Hz	Hypothese Volt bei 60Hz	Nenn- leistung W	In (A)	Cn (Nm)	rpm	ls (A)	Cs (Nm)	Cmax (Nm)
230 ± 10%	230 ± 5%	1//	1	0,83	1,2	0,83	0,83	0,83
$230 \pm 10\%$	230 ± 10%	1 4	0,95	0,83	1,2	0,83	0,83	0,83
$230 \pm 10\%$	240 ± 5%	1,05	1	0,87	1,2	0,87	0,87	0,87
$400 \pm 10\%$	380 ± 5%	1/1/1/1/	1	0,83	1,2	0,83	0,83	0,83
400 ± 10%	400 ± 10%	/1///	0,95	0,83	1,2	0,83	0,83	0,83
$400 \pm 10\%$	415 ± 10%	1,05	1	0,87	1,2	0,87	0,87	0,87
400 ± 10%	440 ± 10%	1,10	1 1	0,90	1,2	0,93	0,93	0,93
400 ± 10%	460 ± 5%	1,15	W 1.94	0,96	1,2	0,96	0,96	0,96
400 ± 10%	480 ± 5%	1,20	1	1///	1,2	1	1	1

Nähere Informationen sind dem Kapitel "Anschlusspläne" auf S. 14 zu entnehmen. Über den "Creator Motor Datenblatt" (Datenblatt-Creator) im Downloadbereich der Webseite www.motive it können die Leistungsdaten angezeigt werden, die auf der Basis der Volt- und Hz-Angaben durch den Benutzer berechnet werden.

Synchrondrehzahl:

sie wird in rpm ausgedrückt und wird mit folgender Formel berechnet:

f 120/p gegeben, in der

f = Speisungsfrequenz Hz p = Anzahl der Polpaare

zeitweilige

überstehen.

Mal den Nennstrom für eine Zeitspanne von mindestens 2 Minuten. Anlaufstrom Is oder Anlauf (oder bei blockiertem Rotor). Siehe Diagramm

Die Motoren sind in der Lage, auch

bis zu einer Stromerhöhung von 1,5

Überbelastungen

Nenndrehmoment:

Cn ist das in Nm ausgedrückte Drehmoment. entspricht Nennleistung und der Nenndrehzahl. Es kommt aus dem Produkt.der Kraft.malden Hebel (Abstand) und wird in Nm gemessen, da die Kraft in NewtonausgedrücktwirdundderAbstandin Metern. Den Wert des Nenndrehmomentes erhält man mit der Formel

 $Cn (Nm) = Pn \times 9550 / rpm$ = Nennleistung in KW = Nenndrehzahl Cmax Is Cs Cn In [%] Anzugs- oder Anlassdrehmoment

(oder bei blockiertem Rotor): Cs ist das bei stehendem Rotor und Motor gegebene Drehmoment bei Stromzuführung mit Nennspannung und-freguenzen.

Maximal-Drehmoment:

Cmax ist das Maximaldrehmoment. das der Motor während des Betriebes bei Stromzuführung mit Nennspannung und -frequenzen in Bezug auf die Drehzahl entwickeln kann. Es ist auch der Wert des

Widerstandsdrehmomentes, bei Überschreitung blockiert sich der Motor.

Pot. Ass. [KW]

Wirkungsgrad:

n wird in % ausgedrückt und aus dem Verhältnis zwischen Nutzleistung und der Summe der Nutzleistung und der Verluste am Motor berechnet, d.h. die reelle, vom Motor absorbierte Leistung. Die Verluste an elektrischen Motoren sind hauptsächlich zweier Arten: aufgrund des Joule-Effektes (Rotor und Stator) und die Verluste am Eisen. Letztere produzieren hauptsächlich Wärme. höherer Wirkungsgrad bedeutet leistungsfähigere Motoren und

Energieersparnis. Je kleiner ein Motor ist, desto mehr kann sich das Vorhandensein der Öldichtung mit doppelter Dichtungslippe, am Abtrieb der verflanschten Delphi-Motoren (B5 oder B14), infolge der erzeugten Reibung, auf die Leistung auswirken. Die Motoren B3 bis zur Größe 132 weisen dagegen V-Ringe auf, die fast keine Reibung haben. Der Einfachheit halber

geben die nachstehenden

Energieaufnahmen und die Leistungen an, die an Motoren B14 der Größe 56 und an Motoren B3 ab Größe 63 gemessen wurden.

Leistungstabellen

Leistungsfaktor oder coso: Er stellt den Kosinus des Phasenverschiebungswinkels zwischen Spannung und Strom dar.

TECHNISCHE DATEN

Temperaturänderung ΔT :

Die Temperaturänderung "ΔT" bezieht sich auf die gesamte Motorwicklung bei Volllastbetrieb einschließlich des Drahtes, der tief in die Statorschlitze hinein verlegt wurde. Zum Beispiel: Wenn ein Motor in einem Raum mit einer Raumtemperatur von 40° C steht und da gestartet und dauernd auf Sollleistung betrieben wird, dann steigt die Temperatur der Wicklung von 40° C auf eine höhere Temperatur an. Der Unterschied zwischen der Anfangstemperatur und der höheren Innentemperatur am

Ende ist die ΔT. Die Motoren der Motive-Baureihe Delphi sind so konzipiert, dass sie eine sehr geringe Erwärmung aufweisen, Klasse B oder niedriger, während ihr Isolationssystem mindestens der Klasse F entspricht (für die Delfire-Beihe auf Klasse H erhöht)

	stens Delfire	der Klas: e-Reihe al	se F (Jf Kla	entspri sse H (cht l erhöl	tur c nt).
180 170						
160						
150						-
140				• • •		
130						
120		-	• •		• • •	•
110	\vdash	_				
100		-				
90	\vdash	-				\vdash
80	\vdash	_				Н
70		-				\vdash
60		-				
50	+	_				\vdash
40		_				
30	\vdash					\vdash
20			2	100		9. 9

		- 1		J. 18.1	
Klasse	Raumtem- perature (°C)	ΔT (°C)	Thermische Reserve (°C)	T max (°C)	
A	40	60	5	105	1
()\ E\.\	40	75	5	120	
В	40	80	5	130	
The state of	40	105	10	155	
H	40	125	15	180	

Thermische Reserve bei Motoren in Klasse F und ΔT Klasse B

thermische Reserve
 ∆T
 Raumtemperatur

Dieser zusätzliche Spielraum verleiht dem Motor einen "Lebensdauerbonus". Als Daumenregel kann man sagen, dass sich die Lebensdauer der Isolation pro 10 Grad nicht benutzter Isolationstemperaturkapazität verdoppelt.

Die üblichste Methode zur Messung des Temperaturanstiegs eines Motors basiert auf dem Umterschied des Ohm'schen Widerstands

der Wicklung in kaltem und in heißem Zustand. Die Formel dafür lautet: ΔT [°C] = (R2-R1)/R1*(234,5+T1)-(T2-T1)

Wobei:

R1 = Widerstand der kalten Wicklung in Ohm (direkt vor dem Beginn des Tests)

R2 = Widerstand der heißen Wicklung in Ohm (wenn der Motor sein Temperaturgleichgewicht erreicht hat)

T1 = Umgebungstemperatur in °C bei Testbeginn

T2 = Umgebungstemperatur in °C bei Testende

Zum Umrechnen von ΔT von Grad C in Fahrenheit: °C (ΔT) x 1.8

Anmerkung: Die Oberflächentemperatur des Motors wird nie die Innentemperatur des Motors übersteigen, sie hängt vom Design und von den Kühlvorrichtungen ab.

Geräuschpegel:

Die Geräuschentwicklung wird in dB(A) ausgedrückt und muss der Norm ISO 1680-2 entsprechen, die die Messung des Geräuschniveaus LwA auf einem Meter Entfernung zur Maschine regelt.

Die Norm EN 60034- 9 setzt die zu respektierenden Geräuschgrenzen fest, indem sie das maximale Geräuschniveau LwA angibt. Die in den folgenden Leistungstabellen angegebenen Geräuschwerte beziehen sich auf den Motor im Leerlauf, bei 50Hz und mit einer Toleranz von +3 dB(A).

Das Massenträgheitsmoment wird mit der Formel J=(1/2) x M x (R²) berechnet, wobei M [Kg] die Drehmasse ist, während R [m] der Radius der Symmetrieachse ist. Ein klassisches Beispiel ist das des Rotors und der Welle.

Wenn wir die Massenträgheitsmomente der Welle J1 und des Rotors J2 betrachten, summieren sich diese und ergeben das Massenträgheitsmoment AJ=J1+J2, da sie sich um dieselbe ADreachse drehen. Ist die Achse nicht dieselbe, wie z.B. bei Riemen und Zugrollen, ist eine weitere Berechnung notwendig.

TOLERANZEN

Die Daten jedes Motors sind in diesem Katalog gemäß der Norm IEC 34-1 angegeben.

Diese setzt insbesondere folgende Toleranzen fest:

	A TO THE RESERVE AT THE PARTY OF THE PARTY O
Abmessungen	Toleranzen
eistung (Verhältnis wischen abgegebener ınd absorbierter Leistung)	-15% di (1- η)
eistungsfaktor	1 / 6 von (1- cosφ) min. 0.02 max 0.07
Orehmoment bei Dlockiertem Rotor	-15% des garantierten Drehmomentes +25% des garantierten Drehmomente
Maximaldrehmoment	-10% des garantierten Drehmomentes Unter der Bedingung, dass das Drehmoment um 1,5-1,6 größer als das Nenndrehmoment ist
Geräuschpegel	+3dB
	+10°C

endig.

Die Testberichte, die den nachstehenden Tabellen zugrunde liegen, können von der Webseite https://www.motive.it/en/rapporti.php

		_		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax		η	%		min	min	Leistur	ngfaktor	cosφ	ΔΤ	LwA	J	
KW	Нр	Тур	rpm	[A]	[A]	In	[Nm]	[Nm]	Cn	[Nm]	Cn	100%	IE	75%	50%	IE2	IE3	100%	75%	50%	[°C]	[dB]	Kgm ²	Kg
0,13	0,18	56B-2	2635	0,36	1,06	3,0	0,47	0,95	2,0	0,94	2,0	65,5	IE3	65,3	63,0	53,6	60,8	0,806	0,639	0,500	23	60	0,00023	3,5
0,18	0,25	63A-2	2875	0,59	2,68	5,9	0,60	2,25	3,8	2,19	3,7	71,0	IE3	65,6	57,7	60,4	65,9	0,642	0,526	0,417		61	0,00031	4,3
0,25	0,35	63B-2	2823	0,65	2,82	4,5	0,85	2,06	2,4	2,32	2,7	76,4	IE3	75,4	71,4	64,8	69,7	0,729	0,599	0,469	49	61	0,00060	4,4
0,37	0,5	63C-2	2791	0,93	4,13	4,5	1,27	3,60	2,8	3,67	2,9	76,4	IE3	76,3	72,8	69,5	73,8	0,755	0,650	0,505	51	61	0,00075	4,9
0,37	0,5	71A-2	2820	0,94	4,33	4,6	1,25	2,90	2,3	3,53	2,8	74,0	IE3	73,7	69,1	69,5	73,8	0,770	0,670	0,525	43	64	0,00080	5,7
0,75	1	71C-2	2834	1,60	9,21	5,4	2,53	7,63	3,0	7,78	3,0	81,6	IE3	82,5	80,8	77,4	80,7	0,811	0,740	0,604	57	64	0,00279	8,0
0,75	1	80A-2	2890	1,76	10,64	6,1	2,48	5,90	2,4	7,80	3,1	80,0	IE2	79,0	75,2	77,4	80,7	0,770	0,700	0,559	42	67	0,00132	9,1
1,1	1,5	80B-2	2868	2,53	14,07	6,0	3,66	9,40	3,0	10,95	3,0	80,7	IE2	80,7	77,8	79,8	-	0,772	0,671	0,521	72	67	0,00124	10,4
1,5	2	80C-2	2849	3,30	19,15	6,0	4,96	14,69	3,0	14,60	3,0	82,0	IE2	83,1	81,7	81,3	-	0,784	0,705	0,568	75	67	0,00144	11,8
1,5	2	905-2	2864	3,17	18,62	5,9	5,00	12,30	2,5	15,32	3,1	82,1	IE2	82,1	79,7	81,3	-	0,833	0,760	0,640	62	72	0,00319	13,2
2,2	3	90L-2	2859	4,51	28,31	6,3	7,35	22,30	3,0	23,16	3,2	83,6	IE2	85,0	83,9	83,2	-	0,843	0,780	0,660	70	72	0,00605	15,8
3	4	100L-2	2875	5,87	36,50	6,2	10,04	22,47	2,2	28,34	2,8	84,8	IE2	86,9	86,2	84,6	-	0,883	0,833	0,717	77	76	0,00518	25,0
4	5,5	100LB-2	2885	7,73	54,36	7,1	13,32	35,47	2,6	42,82	3,2	85,9	IE2	87,0	86,9	85,8	-	0,873	0,822	0,721	83	76	0,02053	27,0
4	5,5	112M-2	2887	7,49	46,28	6,2	13,23	28,70	2,2	41,00	3,1	85,8	IE2	86,8	85,9	85,8	-	0,899	0,860	0,768	72	77	0,01386	28,0
5,5	7,5	112MB-2	2893	9,98	72,39	7,4	18,33	49,04	2,7	59,70	3,3	87,2	IE2	88,2	87,7	87,0	-	0,922	0,892	0,816	87	77	0,03740	34,0
5,5	7,5	132SA-2	2915	10,18	81,38	8,0	18,01	58,62	2,6	58,62	3,5	87,2	IE2	87,4	84,7	87,0	-	0,876	0,834	0,751	65	80	0,02750	40,0
7,5	10	132SB-2	2910	13,65	95,55	7,1	24,71	54,25	2,2	77,52	3,1	88,5	IE2	89,5	88,5	88,1	-	0,903	0,872	0,796	77	80	0,03300	45,5
9,2	12,5	132MA-2	2911	16,62	131,15	8,1	30,18	85,86	2,8	109,89	3,6	89,5	IE2	90,1	89,1	89,4	-	0,895	0,860	0,784	82	81	0,03740	53,0
11	15	132MB-2	2913	19,03	152,23	8,0	36,09	91,02	2,5	126,03	3,5	90,4	IE2	90,9	90,2	89,4	-	0,918	0,895	0,837	57	81	0,03960	55,0
11	15	160MA-2	2932	19,82	127,63	6,4	35,83	78,40	2,2	56,10	1,6	89,5	IE2	89,3	87,3	89,4	-	0,895	0,870	0,810	56	86	0,04147	110,0
15	20	160MB-2	2945	27,18	168,91	6,3	48,48	102,21	2,1	134,30	2,8	90,7	IE2	91,0	90,0	90,3	-	0,867	0,844	0,774	79	86	0,41063	120,0
18,5	25	160L-2	2930	32,50	229,12	7,1	60,30	155,14	2,6	93,96	3,2	91,3	IE2	91,5	90,6	90,9	-	0,895	0,876	0,816	72	86	0,06050	135,0
22	30	180M-2	2959	39,26	278,51	7,1	71,00	174,50	2,5	220,80	3,1	91,4	IE2	90,8	88,4	91,3	-	0,885	0,860	0,804	52	89	0,08250	165,0
30	40	200LA-2	2969	51,91	355,30	6,8	96,80	•	2,0	322,98	3,3	92,5	IE2	92,3	90,7	92,0	-	0,902	0,879	- 1			0,13640	217,0
37	50	200LB-2	2949	64,06	391,35	6,1	119,82		2,2	330,00	2,8	92,5	IE2	92,3	89,0	92,5	-	0,901	0,888	0,841	35	92	,	243,0
45	60	225M-2	2963	78,28	472,34	6,0	145,04		2,2	380,00	2,6	93,5	IE2	93,3	90,2	92,9	-	0,887	0,865	,			,	320,0
55	75	250M-2	2981	95,63	545,37	5,7	176,20	352,40	2,0	475,74	2,7	93,5	IE2	91,6	87,5	93,2	-	0,888	0,870				0,34320	390,0
75	100	280S-2	2970	127,69	614,63	4,8	241,16	409,97	1,7	482,32	2,0	94,3	IE2	92,4	88,3	93,8	-	0,899	0,895	0,874	55	94	0,63690	540,0
90	125	280M-2	2974	153,09	796,95	5,2	289,00	520,21	1,8	693,61	2,4	94,2	IE2	94,1	92,1	94,1	-	0,901	0,895	-				590,0
110	150	315S-2	2980	185,05	1313,83	7,1	352,52	634,53	1,8	775,54	2,2	94,4	IE2	93,8	92,0	94,3	-	0,909	0,903	,			1,29800	0,088
132	180	315MA-2	2980	218,75	1553,14	7,1	423,02	761,44	1,8	930,64	2,2	95,0	IE2	94,4	93,0	94,6	-		0,912	-			2,00200	-
160	215	315LA-2	2980	262,63	1864,69	7,1	512,75	922,95	- 1	1128,05		95,0	IE2	94,4	92,9	94,8	-	,	0,913	-			2,28800	
200	270	315LB-2	2980		2377,36	7,1		1153,69		1410,07	-	95,6	IE2	95,1	93,9	95,0	-	0,902	,				2,61800	
250	335	355M-2	2985		2916,11	7,1		1279,73		1759,63	_	95,6	IE2	95,1	93,8	95,0	-	0,919	0,908	-			3,30000	
315	423	355L-2	2985	524,82	3726,23	7,1	1007,79	1612,46	1,6	2217,14	2,2	95,2	IE2	94,9	94,0	95,0	-	0,910	0,890	0,870	69	103	3,85000	2300,0

IZVAZ	Ha	Tun	2222	In	ls	ls	Cn	Cs	Cs	Cmax	Cmax		η	%		min	min	Leistu	ngfaktor	cosφ	ΔΤ	LwA	J	V a
KW	Нр	Тур	rpm	[A]	[A]	ln	[Nm]	[Nm]	Cn	[Nm]	Cn	100%	IE	75%	50%	IE2	IE3	100%	75%	50%	[°C]	[dB]	Kgm ²	Kg
0,09	0,12	56B-4	1346	0,33	0,97	2,9	0,64	1,80	2,8	1,80	2,8	60,7	IE2	58,0	43,0	-	-	0,6	0,540	0,360	25	52	0,00040	3,7
0,13	0,18	63A-4	1379	0,40	1,30	1,0	0,91	1,96	2,1	2,17	2,3	67,0	IE2	65,6	63,0	64,7	-	0,7	0,578	0,479	41	52	0,00039	4,3
0,18	0,25	63B-4	1391	0,55	1,91	3,5	1,26	3,19	2,5	3,23	2,5	70,1	IE3	68,9	63,4	64,7	69,9	0,7	0,580	0,452	42	52	0,00043	4,8
0,25	0,35	63C-4	1380	0,72	2,41	3,3	1,73	4,10	2,4	4,00	2,3	71,0	IE2	71,3	67,6	68,5	-	0,7	0,601	0,468	51	52	0,00055	5,4
0,25	0,35	71A-4	1400	0,69	2,90	4,2	1,71	4,30	2,5	4,57	2,7	72,7	IE2	72,0	68,0	68,5	-	0,7	0,615	0,500	41	55	0,00080	5,8
0,37	0,5	71B-4	1397	1,11	3,72	3,7	2,59	6,00	2,3	6,10	2,4	73,2	IE2	72,0	61,2	72,7	-	0,7	0,630	0,412	61	55	0,00130	6,3
0,55	0,75	71C-4	1386	1,41	6,19	4,4	3,79	9,13	2,4	10,00	2,6	77,2	IE2	78,5	76,9	77,1	-	0,7	0,620	0,506	56	55	0,00170	7,6
0,55	0,75	80A-4	1431	1,60	7,24	4,5	3,77	9,83	2,5	10,88	2,8	77,1	IE2	74,0	68,1	77,1	-	0,7	0,532	0,410	54	58	0,00180	10,0
0,75	1	80B-4	1440	2,47	12,26	6,4	5,37	17,10	3,4	17,51	3,5	80,3	IE2	79,7	77,5	79,6	-	0,6	0,533	0,435	43	56	0,00233	10,6
1,1	1,5	80C-4	1411	2,81	11,84	4,2	7,63	17,86	2,3	18,57	2,4	81,7	IE2	83,1	81,3	81,4	-	0,7	0,617	0,474	67	58	0,00232	11,8
1,1	1,5	905-4	1409	2,85	11,44	4,0	7,62	17,07	2,2	17,27	2,3	81,4	IE2	82,4	79,0	81,4	-	0,7	0,612	0,446	21	61	0,00253	12,6
1,5	2	90L-4	1413	3,54	18,44	5,2	10,14	27,60	2,7	31,05	3,1	82,9	IE2	84,0	82,8	82,8	-	0,7	0,644	0,531	59	61	0,00297	15,7
1,9	2,6	90LB-4	1415	4,47	23,24	5,2	12,82	24,61	1,9	26,50	2,1	84,3	IE2	84,6	82,0	84,3	-	0,7	0,630	0,488	55	61	0,00495	16,0
2,2	3	100LA-4	1435	4,80	25,82	5,4	14,64	33,20	2,3	41,87	2,9	84,4	IE2	84,5	82,1	84,3	-	0,8	0,668	0,546	68	64	0,00594	19,7
3	4	100LB-4	1407	6,39	27,93	4,4	20,36	41,20	2,0	30,12	1,5	85,5	IE2	87,9	87,1	85,5	-	0,8	0,700	0,550	65	64	0,00744	24,6
4	5,5	112M-4	1425	8,01	40,17	5,3	27,62	51,04	1,8	65,40	2,4	86,6	IE2	88,2	88,0	86,6	-	0,9	0,800	0,675	84	65	0,01437	28,0
5	6,8	112MB-4	1446	10,45	64,45	6,0	33,19	78,88	2,2	102,58	2,8	88,1	IE2	88,3	87,0	87,7	-	0,8	0,700	0,573	74	65	0,19660	35,0
5,5	7,5	1325-4	1446	10,91	63,83	6,0	36,89	76,07	2,1	98,46	2,7	87,8	IE2	89,5	88,5	87,7	-	0,8	0,780	0,660	70	71	0,03554	39,0
7,5	10	132M-4	1446	14,36	89,86	6,3	49,90	106,64	2,1	135,21	2,7	88,8	IE2	89,7	70,0	88,7	-	0,9	0,810	0,716	79	71	0,04670	47,0
9,2	12,5	132MB-4	1426	16,71	95,09	5,7	61,61	123,30	2,0	97,88	1,6	89,9	IE2	92,2	92,6	89,8	-	0,9	0,850	0,784	96	72	0,03444	55,0
11	15	132MC-4	1461	21,96	170,43	7,8	71,90	196,40	2,7	186,95	2,6	89,8	IE2	89,8	87,8	89,8	-	0,8	0,770	0,610	80	73	0,04444	57,0
11	15	160M-4	1460	21,67	134,07	6,2	71,95	153,40	2,1	208,66	2,9	89,8	IE2	89,4	87,6	89,8	-	0,8	0,776	0,654	70	75	0,06777	118,0
15	20	160L-4	1456	28,12	178,96	6,4	98,39	197,10	2,0	245,96	2,5	90,8	IE2	91,7	90,6	90,6	-	0,8	0,810	0,717	72	75	0,10199	132,0
18,5	25	180M-4	1476	34,45	215,02	6,2	119,70	220,90	1,8	334,30	2,8	91,2	IE2	91,1	89,9	91,2	-	0,9	0,810	0,723	51	76	0,15443	164,0
22	30	180L-4	1470	39,57	202,00	5,1	142,93	255,00	1,8	357,31	2,5	91,6	IE2	91,6	90,8	91,6	-	0,9	0,847	0,775	75	76	0,17554	182,0
30	40	200L-4	1476	54,03	305,40	5,9	198,60	367,29	1,9	537,81	2,7	92,4	IE2	92,4	91,0	92,3	-	0,9	0,859	0,780	74	79	0,29108	245,0
37	50	225S-4	1484	66,57	347,40	5,3	240,30	399,80	1,7	575,00	2,4	92,9	IE2	93,3	92,4	92,7	-	0,9	0,843		68		0,58630	258,0
45	60	225M-4	1480	79,02	437,00	5,5	290,37	570,00	2,0	710,00	2,4	93,3	IE2	93,3	92,1	93,1	-	0,9	0,863	0,799	70	81	0,52106	290,0
55	75	250M-4	1480	97,61	585,64	6,0	354,90	674,31	1,9	816,27	2,3	93,7	IE2	96,1	93,0	93,5	-	0,9	0,841	0,780	75	83	0,73326	388,0
75	100	280S-4	1484	129,70	648,48	5,0	482,65	854,00	1,8	915,00	1,9	94,1	IE2	94,2	92,2	94,0	-	0,9	0,860	0,840	68	80	1,43000	510,0
90	120	280M-4	1485	152,96	747,77	4,9	578,79	1041,82	,	1150,00	- 1	94,7	IE2	94,7	94,7	94,2	-	0,9	0,889	0,854	54	86	1,63900	606,0
110	150	315S-4	1489	189,80	1138,79	6,0	705,51	1481,56	2,1	1834,32	2,6	95,1	IE2	94,6	92,6	94,5	-	0,9	0,860	0,803	71	93	3,44300	910,0
132	180	315M-4	1485	224,09	1174,96	5,2	848,89	1612,89	1,9	2207,11	2,6	95,2	IE2	95,3	94,7	94,7	-	0,9	0,875	0,831	55	93	4,01500	1000,0
160	220	315LA-4	1485	276,24	1906,08	6,9	1028,96	2160,81	2,1	2263,70	2,2	95,0	IE2	94,5	94,0	94,9	-	0,9	0,850	0,800	61		4,52320	
200	270	315LB-4	1481	339,92	2345,45	6,9	1289,67	2708,31	2,1	2837,27	-	95,1	IE2	94,7	93,8	95,1	-	0,9	0,885	0,844	68		5,29100	
250	335	355M-4	1483	420,03	2898,23	6,9	1609,91	3380,82	2,1	3541,81	2,2	95,6	IE2	95,4	94,7	95,1	-	0,9	0,897	0,874	67	101	7,18300	1700,0
315	423	355L-4	1490	524,91	3621,87	6,9	2018,96	4239,82	2,1	4441,71	2,2	95,7	IE2	95,5	94,7	95,1	-	0,9	0,883	0,818	70	101	9,06400	1900,0

KW	Нр	Тур	rpm	ln	ls	<u>ls</u>	Cn	Cs	<u>Cs</u>	Cmax	Cmax		η	%		min	Leistur	ngfaktor	cosφ	ΔΤ	LwA	J	Kg
IXVV	ПР	тур	ı pııı	[A]	[A]	ln	[Nm]	[Nm]	Cn	[Nm]	Cn	100%	IE	75%	50%	IE2	100%	75%	50%	[°C]	[dB]	Kgm ²	ivg
0,18	0,25	71A-6	921	0,66	1,93	2,9	1,87	4,20	2,3	4,30	2,3	62,7	IE2	61,1	53,7	56,6	0,631	0,540	0,418	41,4	51	0,00110	6,7
0,25	0,35	71B-6	910	0,87	2,62	3,0	2,62	6,00	2,3	6,00	2,3	64,0	IE2	62,5	57,1	61,6	0,650	0,550	0,426	54,3	51	0,00140	7,1
0,37	0,5	80A-6	921	1,12	3,63	3,2	3,81	7,62	2,0	7,57	2,0	68,9	IE2	68,6	62,5	67,6	0,689	0,609	0,450	52	53	0,00160	8,8
0,55	0,75	80B-6	907	1,48	4,77	3,2	5,73	10,34	1,8	11,18	2,0	73,1	IE2	74,5	72,1	73,1	0,732	0,660	0,515	63	53	0,00190	10,6
0,75	1	905-6	915	2,01	5,98	3,0	7,83	13,00	1,7	9,97	1,3	76,0	IE2	77,9	75,2	75,9	0,710	0,610	0,480	69,1	57	0,00319	12,8
1,1	1,5	90L-6	915	2,74	9,93	3,6	11,48	22,10	1,9	16,57	1,4	78,3	IE2	80,2	79,3	78,1	0,740	0,650	0,560	66,7	57	0,00385	15,8
1,5	2	100L-6	944	3,91	16,15	4,1	15,17	29,39	1,9	35,09	2,3	79,9	IE2	80,3	77,6	79,8	0,693	0,609	0,477	70,8	58	0,00759	23,0
2,2	3	112M-6	951	5,45	25,84	4,7	22,09	45,40	2,1	57,79	2,6	81,9	IE2	82,7	80,4	81,8	0,712	0,610	0,475	73,7	61	0,01540	25,0
3	4	1325-6	969	6,95	38,23	5,5	29,57	62,40	2,1	81,20	2,7	84,5	IE2	84,6	82,1	83,3	0,737	0,710	0,536	62,8	64	0,03146	28,0
4	5,5	132MA-6	969	8,85	56,55	6,4	39,42	89,90	2,3	121,80	3,1	84,7	IE2	84,5	82,0	84,6	0,770	0,690	0,566	76,2	64	0,03927	45,0
5,5	7,5	132MB-6	966	12,38	65,09	5,3	54,37	103,20	1,9	95,28	1,8	87,0	IE2	87,5	87,0	86,0	0,737	0,653	0,545	64	64	0,04961	55,0
7,5	10	160M-6	978	16,97	88,24	5,2	73,24	109,85	1,5	146,47	2,0	88,6	IE2	89,2	88,5	87,2	0,720	0,670	0,600	56,4	71	0,08910	118,0
11	15	160L-6	970	23,37	106,35	4,6	108,30	173,28	1,6	184,11	1,7	89,5	IE2	90,5	89,9	88,7	0,759	0,700	0,582	79,4	71	0,12760	125,0
15	20	180L-6	984	29,79	140,65	4,7	145,58	232,93	1,6	334,83	2,3	89,8	IE2	89,4	88,0	89,7	0,809	0,750	0,657	63,1	73	0,22770	160,0
18,5	25	200LA-6	970	35,28	183,46	5,2	182,14	327,85	1,8	454,99	2,5	91,0	IE2	90,8	89,7	90,4	0,832	0,781	0,685	59,3	76	0,34650	217,0
22	30	200LB-6	982	42,61	215,40	5,1	213,95	385,11	1,8	534,88	2,5	91,1	IE2	91,0	89,3	90,9	0,818	0,763	0,668	79,9	76	0,39600	244,0
30	40	225M-6	980	55,62	236,55	4,3	292,35	503,00	1,7	518,00	1,8	91,8	IE2	91,6	92,0	91,7	0,848	0,828	0,759	59,8	76	0,60170	295,0
37	50	250M-6	983	68,00	297,27	4,4	359,46	611,08	1,7	718,92	2,0	92,6	IE2	92,3	92,4	92,2	0,848	0,828	0,759	56	78	0,92730	365,0
45	60	280S-6	982	78,93	360,33	4,6	437,63	700,20	1,6	919,02	2,1	93,2	IE2	93,6	92,2	92,7	0,883	0,865	0,813	42,4	80	1,52900	500,0
55	75	280M-6	985	96,24	459,99	4,8	533,25	853,20	1,6	1119,82	2,1	93,1	IE2	93,6	93,2	93,1	0,886	0,873	0,822	71,6	80	1,81500	545,0
75	100	315S-6	986	132,96	534,60	4,0	726,42	1162,27	1,6	1307,56	1,8	94,5	IE2	95,1	94,4	93,7	0,862	0,860	0,820	69,4	85	4,52100	810,0
90	125	315MA-6	985	159,67	1069,81	6,7	872,59	1745,18	2,0	1745,18	2,0	94,6	IE2	94,5	93,6	94,0	0,860	0,831	0,766	69	85	5,25800	900,0
110	150	315LA-6	985	195,78	1311,71	6,7	1066,50	2132,99	2,0	2132,99	2,0	94,3	IE2	93,9	93,7	94,3	0,860	0,840	0,820	70	85	5,99500	1010,0
132	180	315LB-6	985	233,94	1567,40	6,7	1279,80	2559,59	2,0	2559,59	2,0	94,7	IE2	94,2	93,7	94,6	0,860	0,840	0,810	68	85	6,73200	1140,0
160	220	355MA-6	990	279,71	1874,08	6,7	1543,43	2932,53	1,9	3086,87	2,0	94,9	IE2	94,2	93,3	94,8	0,870	0,870	0,850	67	92	10,45000	1550,0
200	270	355MB-6	990	341,43	2287,55	6,7	1929,29	3665,66	1,9	3858,59	2,0	95,0	IE2	94,5	94,0	95,0	0,890	0,870	0,850	65	92	11,44000	1600,0
250	335	355L-6	990	431,63	2891,93	6,7	2411,62	4582,07	1,9	4823,23	2,0	95,0	IE2	95,0	94,0	95,0	0,880	0,860	0,840	65	92	13,64000	1700,0

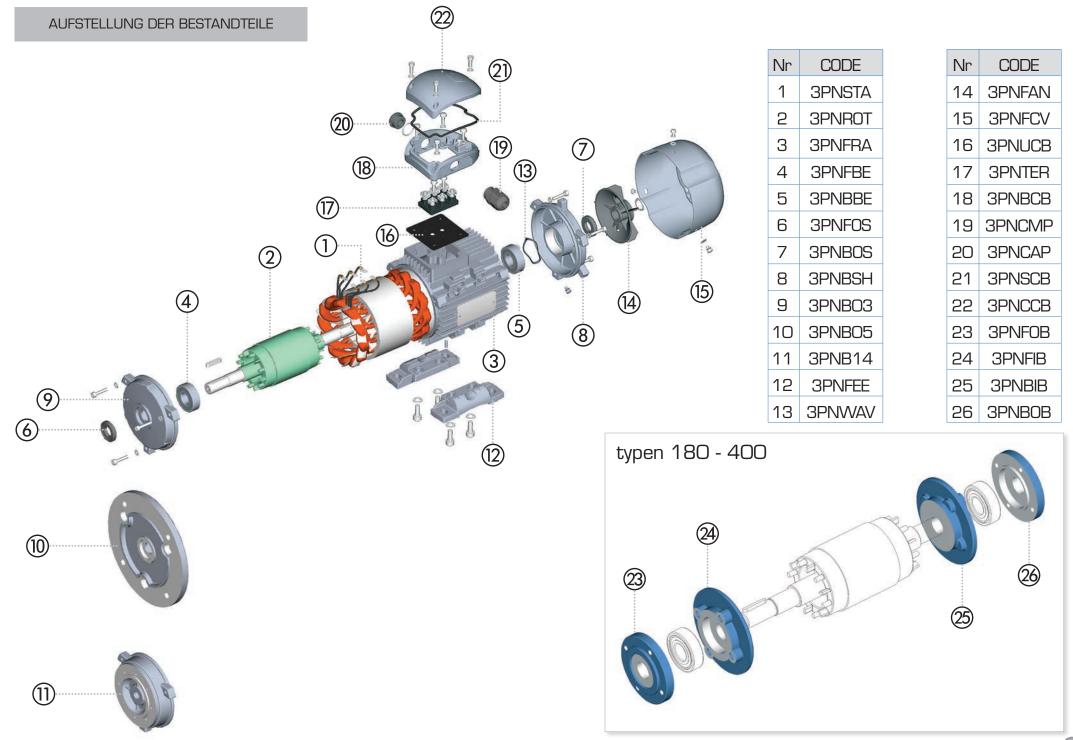
KW	l la	Tun	2222	ln	ls	ls	Cn	Cs	Cs	Cmax	Cmax		η	%		min	min	Leistu	ngfakto	r cosφ	ΔΤ	LwA	J	V.a.
KW	Нр	Тур	rpm	[A]	[A]	În	[Nm]	[Nm]	Cn	[Nm]	Cn	100%	IE	75%	50%	IE2	IE3	100%	75%	50%	[°C]	[dB]	Kgm²	Kg
0,13	0,18	71B-8	651	0,71	1,48	2,1	1,91	3,80	2,0	3,93	2,1	48,2	IE2	44,9	39,0	39,8	50,7	0,550	0,460	0,390	76	52	0,00080	6,8
0,18	0,25	80A-8	694	0,83	2,01	2,4	2,48	4,70	1,9	5,50	2,2	56,1	IE2	51,0	44,7	45,9	58,7	0,560	0,460	0,392	54	52	0,00180	10,0
0,25	0,35	80B-8	691	1,10	2,62	2,4	3,46	6,90	2,1	7,06	2,2	61,0	IE2	58,2	52,2	50,6	64,1	0,540	0,450	0,373	56	52	0,00190	10,8
0,37	0,5	90S-8	670	1,41	5,65	4,0	5,27	10,55	2,0	10,55	2,0	62,0	IE2	61,0	54,0	56,1	69,3	0,610	0,550	0,350	36	54	0,00210	13,0
0,55	0,75	90L-8	701	2,04	6,25	3,1	7,49	15,50	2,1	18,00	2,4	68,3	IE2	66,0	58,1	61,7	73,0	0,570	0,490	0,366	22	54	0,00240	14,0
0,75	1	100LA-8	712	2,24	8,66	3,86	10,06	21,70	2,16	25,09	2,49	75,9	IE3	75,1	70,3	66,2	75,0	0,636	0,550	0,426	47	57	0,00900	23,0
1,1	1,5	100LB-8	702	3,38	12,14	3,6	14,96	31,30	2,1	35,91	2,4	73,9	IE2	73,4	68,5	70,8	77,7	0,635	0,524	0,397	65	57	0,01000	25,0
1,5	2	112M-8	711	4,21	16,94	4,0	20,15	43,80	2,2	50,70	2,5	79,2	IE2	79,8	79,0	74,1	79,7	0,650	0,550	0,500	48	61	0,02450	28,0
2,2	3	1325-8	710	5,54	33,23	6,0	29,59	53,26	1,8	59,18	2,0	81,9	IE3	82,2	80,0	77,6	81,9	0,700	0,660	0,481	57	64	0,03140	45,0
3	4	132M-8	716	7,25	31,48	4,3	40,01	71,90	1,8	93,01	2,3	83,0	IE2	83,9	82,2	80,0	83,5	0,720	0,650	0,494	63	64	0,03950	55,0
4	5,5	160MA-8	722	9,34	44,12	4,7	52,95	92,38	1,7	125,82	2,4	84,8	IE3	85,1	83,0	81,9	84,8	0,730	0,671	0,531	67	68	0,07530	110,0
5,5	7,5	160MB-8	726	12,39	54,99	4,4	72,35	11,72	1,5	162,63	2,2	84,5	IE2	83,3	79,2	83,8	86,2	0,758	0,698	0,580	46	68	0,09310	120,0
7,5	10	160L-8	727	16,23	78,06	4,8	95,40	178,55	1,9	233,11	2,4	85,5	IE2	84,8	82,3	85,3	87,3	0,772	0,723	0,609	51	68	0,12600	135,0
11	15	180L-8	730	23,48	129,17	5,5	143,90	287,81	2,0	287,81	2,0	87,8	IE2	87,9	87,5	86,9	88,6	0,770	0,700	0,650	51	70	0,20300	160,0
15	20	200L-8	730	31,03	204,78	6,6	196,23	392,47	2,0	392,47	2,0	89,5	IE2	89,4	87,8	88,0	89,6	0,780	0,709	0,580	69	73	0,33900	235,0
18,5	25	225S-8	730	38,48	253,99	6,6	242,02	459,84	1,9	484,04	2,0	91,3	IE3	91,5	90,5	88,6	90,1	0,760	0,720	0,680	57	73	0,49100	242,0
22	30	225M-8	730	44,84	295,97	6,6	287,81	546,84	1,9	575,62	2,0	91,3	IE3	91,6	90,6	89,1	90,6	0,776	0,727	0,608	69	73	0,54700	285,0
30	40	250M-8	730	59,32	391,51	6,6	392,47	745,68	1,9	784,93	2,0	92,4	IE3	92,3	91,0	89,8	91,3	0,790	0,760	0,720	65	75	0,84300	390,0
37	50	2805-8	740	71,62	312,00	4,3	485,60	752,16	1,5	987,02	2,0	92,5	IE3	93,0	92,2	90,3	91,8	0,819	0,778	0,683	67	76	8,78078	500,0
45	60	280M-8	740	89,93	416,22	4,6	580,74	900,10	1,6	1316,04	2,3	92,3	IE3	92,2	91,7	90,7	92,2	0,819	0,778	0,679	57	76	1,65000	580,0
55	75	315S-8	740	104,10	687,05	6,6	709,80	1277,64	1,8	1419,59	2,0	93,0	IE3	93,0	92,0	91,0	92,5	0,820	0,760	0,650	66	82	4,79000	790,0
75	100	315MA-8	740	142,91	943,23	6,6	967,91	1742,23	1,8	1935,81	2,0	93,4	IE3	92,8	91,1	91,6	93,1	0,811	0,744	0,614	67	82	5,58000	970,0
90	125	315LA-8	740	168,57	1112,56	6,6	1161,49	2090,68	1,8	2322,97	2,0	93,8	IE3	93,3	91,6	91,9	93,4	0,822	0,769	0,641	67	82	6,37000	1055,0
110	150	315LB-8	740	205,82	1317,24	6,4	1419,59	2555,27	1,8	2839,19	2,0	94,4	IE3	94,1	92,7	92,3	93,7	0,817	0,754	0,629	65	82	7,23000	1118,0
132	180	355MA-8	740	247,97	1587,01	6,4	1703,51	3066,32	1,8	3407,03	2,0	93,7	IE2	93,7	93,1	92,6	94,0	0,820	0,820	0,760	64	82	7,60000	2000,0
160	220	355MB-8	740	298,97	1913,44	6,4	2064,86	3716,76	1,8	4129,73	2,0	94,2	IE2	94,2	93,5	93,0	94,3	0,820	0,820	0,760	61	82	7,70000	2150,0
200	270	355L-8	740	368,04	2355,48	6,4	2581,08	4645,95	1,8	5162,16	2,0	94,5	IE2	94,5	93,0	93,5	94,6	0,830	0,830	0,790	62	82	8,20000	2250,0
250	335	355LB-8	740	467,15	2989,75	6,4	3226,35	5807,43	1,8	6452,70	2,0	94,2	IE2	94,2	93,1	93,5	94,6	0,820	0,820	0,780	65	82	8,30000	2350,0

Um die Daten der Doppelgeschwindigkeitsmotoren und Delfire zu erhalten wenden Sie sich bitte an unser technisches Büro.

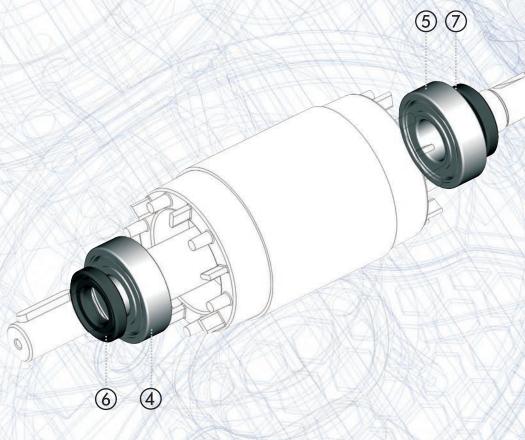
				In	ls	ls	Cn	Cs	Cs	Cmax	Cmax			η %		min	Leistur	ngsfaktor	COSm	ΔΤ	LwA	J	
KW	Нр	Тур	rpm	(A)	(A)		(Nm)	(Nm)		(Nm)		100%		i	50%	IE3		ĭ	50%	(°C)	(dB)	Kgm²	Kg
0.75	1	004.0	0000			In C.O.			Cn		Cn	100%	IE	75%			100%	75%				_	47.0
0,75	1,5	80A-2 80B-2	2892 2885	1,74 2,26	11,84 16,74	6,8 7,4	2,48 3,64	8,60 10,90	3,5 3,0	9,18 12,74	3,7 3,5	80,9 84,5	IE3	79,6 84,7	76,4 82,8	80,7 82,7	0,770	0,700		35 41		0,00158 0,00185	17,0 18,0
1,1	2	80C-2	2849	3,23	18,74	6,0	5,12	15,18	3,0	15,09	3,0	84,3	IE3	85,5	84.0	84,2	0.802	0,770		75		0.00242	11,8
1,5	2	90S-2	2902	3,26	25,07	7,7	4,93	19,12	3,9	18,74	3,8	85,3	IE3	83,4	81,3	84,2	0,802	0,726		43		0.00383	23,0
2,2	3	90L-2	2918	5,02	38,59	7,7	7,35	30,97	4,2	30,44	4,1	86,2	IE3	87,0	84,9	85,9	0,730	0.675		48		0.00726	26,0
3	4	100L-2	2927	6,27	55,58	9,6	9,83	38,85	5,3	44,65	6,1	87,4	IE3	86,7	82,0	87,1	0,789	0,717	-			0,02053	35,0
4	5.5	112M-2	2936	7,45	70,79	9,5	13,00	47,98	3,6	60,74	4,6	88,6	IE3	88,2	86,2	88,1	0,871	0,817	_	49		0,03558	43,0
5,5	7,5	132SA-2		10,14	70,59	7,0	17,87	37,70	2,1	35,79	2,0	91,0	IE3	89,7	87,4	89,2		0,840		48		0,03300	66,0
7,5	10	132SB-2	2925	13,35	95,00	7,1	24,49	53,50	2,2	78,50	3,2	91,6	IE3	92,4	92,9	90,1	0,885	0,850	0,760	60	78	0,03960	73,0
11	15	160MA-2		20,56	171,09	8,7	35,29	102,75	2,9	135,34	3,8	91,4	IE3	90,8	88,5	91,2	0,827	0,783	0,695	43	81	0,25313	120,0
15	20	160MB-2		26,80	166,53	6,3	49,17	103,67	2,1	136,23	2,8	92,0	IE3	92,2	91,3	91,9	0,880	0,856		79		0,41063	132,0
18,5	25	160L-2	2942	32,15	192,92	6,0	60,05	124,31	2,1	179,00	2,1	93,0	IE3	93,7	93,0	92,4	0,893	0,875		58		0,07260	150,0
22	30	180M-2	2950	37,53	304,03	8,1	71,22	163,81	2,3	220,80	3,1	94,0	IE3	93,9	93,0	92,7	0,900	0,880		41		0,09900	205,0
30	40	200LA-2		51,33	351,40	6,8	98,00	196,99	2,0	327,04	3,3	93,6	IE3	93,3	91,8	93,3	0,912	0,889		60		0,16368	250,0
37	50	200LB-2		63,26	474,46	7,5	119,38	274,56	2,3	275,49	2,3	93,8	IE3	93,6	90,2	93,7	0,900	0,887		69		0,18348	270,0
45	60	225M-2	2960	76,69	582,87	7,6	145,19	333,93	2,3	332,80	2,3	94,1	IE3	93,9	90,7	94,0	0,900	0,878		66		0,30756	315,0
55	75	250M-2	2970 2986	94,39 129,84	707,92 884,20	7,5 5,9	176,85 244,80	406,76 536,60	2,3 1,8	406,76 837,25	2,3 2,8	94,5	IE3	92,6	88,5	94,3	0,890	0,872		61		0,41184	420,0
75 90	100 125	280S-2 280M-2	2989	149,07	983,90	6,5	287,90	560,90	1,0	1061,28	3,7	94,7 95,0	IE3	94,7	91,1 93,9	94,7 95,0		0,863		53		0,63690	
30	120	20UIVI-2	2505	145,07	303,30	0,5	207,30	560,80	1,5	1001,20	٥, /	35,0	IEO	94,0	33,3	35,0	0,515	0,501	0,000	บฮ	54	0,74230	550,0
0,13	0,18	63A-4	1391	0,55	1,91	3,5	1,26	3,19	2,5	3,23	2,5	70,1	IE3	68,9	63,4	69,9	0,682	0,580	N 452	39	52	0,00157	4,3
0,75	1	80B-4	1446	2,32	11,86	6,4	5,06	17,68	3,4	18,10	3,5	82,7	IE3	80,8	75,6	82,5	0,572	0,471				0,00232	12,0
1,1	1,5	905-4	1417	2,59	13,69	5,5	7,62	23,49	3,1	23,11	3,1	84,2	IE3	84,6	81,4	84,1		0,661				0.00301	25,0
1,5	2	90L-4	1427	3,59	24,34	6,8	10,03	41,06	4,1	38,49	3,8	85,3	IE3	85,1	83,0	85,3		0,592		41		0.00356	30.0
2,2	3	100LA-4	1459	5,18	39,50	9,1	14,43	54,26	3,7	63,46	4,3	87,0	IE3	86,4	83,7	86,7		0,507		41		0,00713	36,0
3	4	100LB-4	1447	6,48	49,52	7,6	19,76	69,03	3,5	77,85	3,9	89,0	IE3	89,4	86,8	87,7	0,745	0,648	0,519	46	64	0,00893	40,0
4	5,5	112M-4	1463	8,71	66,06	8,3	26,31	80,63	3,0	107,23	4,0	89,0	IE3	88,2	85,5	88,1	0,758	0,661	0,522	50	77	0,01588	43,0
5,5	7,5	1325-4	1454	10,64	68,01	6,4	36,12	75,86	2,1	101,15	2,8	89,9	IE3	92,1	92,4	89,6	0,830	0,770		61		0,02853	47,5
7,5	10	132M-4	1460	14,39	94,37	6,6	49,06	91,80	1,9	132,46	2,7	90,5	IE3	90,8	89,9	90,4	0,831	0,790		46		0,03946	81,0
11	15	160M-4	1468	20,76	121,31	5,8	71,56	121,50	1,7	193,21	2,7	91,8	IE3	91,7	90,4	91,4	0,833	0,790		52		0,08133	125,0
15	20	160L-4	1473	27,76	176,76	6,3	97,80	161,57	1,6	272,90	2,8	92,3	IE3	92,4	91,0	92,1	0,847	0,807		65		0,38293	150,0
18,5	25	180M-4	1477	33,53	206,45	6,2	120,94	202,50	1,7	384,23	3,2	92,6	IE3	92,1	90,2	92,6	0,870	0,817		40		0,18531	170,6
30	30 40	180L-4 200L-4	1470 1480	39,62 53,48	261,96 385,07	6,6 7,2	142,93 193,58	235,19 425,88	1,6 2,2	401,22 445,24	2,8 2,3	93,2 93,6	IE3	91,7 93,8	91,0 92,8	93,0 93,6	0,860 0.865	0,832		59 59		0,21065 0,34930	189,3 254.8
37	50	225S-4	1480	65,37	490,30	7,5	238,75	525,25	2,2	549,13	2,3	93,9	IE3	92,7	92,0	93,9	0.870	0,839		61		0,54128	268,3
45	60	225M-4	1488	79,60	502,60	6,5	291,50	581,37	2,0	859,88	2,9	94,6	IE3	94,5	93,4	94,2	0,865	0,820		65		0,62527	353,0
55	75	250M-4	1480	93,89	713,58	7,6	354,90	780,78	2,2	816,27	2,3	95,0	IE3	94,2	93,5	94,6		0,862				0,87991	450.0
75	100	280S-4	1492	127,74	822,60	6,3	480,40	990,59	2,1	1467,26	3,0	95,0	IE3	95,2	94,0	95,0		0,870				1,43000	-
90	120	280M-4	1489	152,80	1012,70	6,6	578,10	1207,78	8,7	1729,93	12,4	95,2	IE3	95,2	94,4	95,2		0,878				1,63900	
0,75	1	905-6	936	2,14	8,79	4,5	7,74	20,97	1,1	22,24	1,2	79,2	IE3	78,7	74,0	78,9	0,647	0,543				0,00300	23,0
1,1	1,5	90L-6	945	3,23	13,96	4,3	11,12	34,15	3,1	34,50	3,1	81,1	IE3	80,2	75,8	81,0	0,603	0,529	_			0,00360	17,8
1,5	2	100L-6	955	4,01	21,54	5,4	14,99	47,49	3,2	47,80	3,2	83,0	IE3	83,9	83,4	82,5	0,652	0,508				0,00850	35,0
2,2	3	112M-6	968	5,74	30,33	5,3	21,68	51,38	2,4	65,69	3,0	84,8	IE3	84,4	83,1	84,3	0,654	0,525				0,01600	44,0
3	4	1325-6	971	6,99	38,51	5,5	29,51	58,10	2,0	76,71	2,6	87,6	IE3	88,0	86,7	85,6	0,707	0,611		39		0,02930	67,0
4	5,5	132MA-6	974	9,34	58,39	6,3	39,22	90,90	2,3	125,50	3,2	88,2	IE3	88,0	86,1	86,8	0,701	0,610	_			0,03720	75,0
5,5	7,5	132MB-6	972	12,46	72,99	5,9	54,04	124,29	2,3	156,71	2,9	90,0	IE3	90,1	89,2	88,0	0,708	0,606				0,04780	86,0
/,5	10	160M-6	9/0	15,56	104,25	6,/		155,06		238,26	2,2		IE3	89,3		89,1	0,780	0,668	0,542	26	72	0,11583	150,0
11 15	15 20	160L-6 180L-6	970 980	22,26 29,28	153,57 210,79		108,30 146,17	227,43 292,35		306,96		90,3	IE3	90,4	89,5 90,5	20,3	0,790	0,070	0,049	50	70	0,14674 0,26186	200,0
18,5	25	200LA-6		35,95	258,84		180,28	378,59		396,62	2.7	91.7	IE3	91,8	90,5	91,2	0,810	0,033	0,563	64	72	0,20100	240 N
22	30	200LA-0		41,96	306,27	7,2	214,39	450,21	2,1	471,65		92,3	IE3	92,4	91,5	92,2	0,870	0,000	0,500	64	72	0,45540	260,0
30	40	225M-6	980	56,78	403,15		292,35	584,69		613,93			IE3	93,1			0.820	0.702	0.570	65	73	0,69196	300.0
37	50	250M-6	986	64,32	307,90		364,50		1,4			93,6	IE3	94,1	93,7	93.3	0.906	0.890	0.837	65	75	1,06040	420.0
45	60	280S-6		80,52	579,73		438,52			964,74			IE3	93,9		93,7	0,860	0,736	0,598	64	75	1,75835	540,0
55	75	280M-6		97,99	705,55					1179,13			IE3	94,3		94,1						2,08725	

IE4, super premium efficiency class IEC 60034-30-1

		_		In	ls	ls	Cn	Cs	Cs	Cmax	Cmax			η %		min	min	Leistun	gsfaktor	COSφ	ΔΤ	LwA	J	
KW	Нр	Тур	rpm	(A)	(A)	 In	(Nm)	(Nm)	Cn	(Nm)	Cn	100%	ΙE	75%	50%	IE3	IE4	100%	75%	50%	(°C)	(dB)	Kgm ²	Kg
0.55	0.75	71B-2	2890	1,32	9,31	7,2	1,80	7,20	3,9	7,63	4,1	82,0	IE4	81.0	77,2	74.1	81.5	0.722	0.628	0.491	36	64	0.00090	6.9
1,5	2	905-2	2894	2,90	23,15	8.0	4,97	20,08	4,0	19,73	4,0	87,6	IE4	87,5	85,9	84,2	86.5	0.788	0,708	0.578	43	71	0,00974	23,0
2,2	3	90L-2	2918	4,89	37,57	8,4	7,28	31,30	4,2	30,76	4,1	88,5	IE4	89,3	87,1	84,1	87,2	0,738	0,656	-	48		0,00283	26,0
3	4	100L-2	2927	6,14	54,40	9,6	10,04	39,69	5,3	45,62	6,1	89,3	IE4	87,6	83,8	87,1	89,1	0,806	0,683	0,587	51	75	0,02053	35,0
4	5,5	112M-2	2936	7,32	69,53	9,5	13,23	48,84	3,6	61,84	4,6	90,2	IE4	89,8	87,7	88,1	90,0	0,887	0,832	0,718	49	77	0,03558	43,0
11	15	160MA-2	2966	20,25	168,51	8,7	35,83	104,33	2,9	137,41	3,8	92,8	IE4	92,2	89,8	91,2	92,6	0,840	0,827	0,706	43	75	0,41063	118,0
75	100	280S-2	2970	125,82	868,14	6,9	241,16	530,56	2,2	554,67	2,3	95,6	IE4	93,7	89,5	94,7	95,6	0,900	0,896	0,875	55	91	0,89362	550,8
90	125	280M-2	2980	150,80	980,00	6,5	288,80	610,00	2,1	665,00	2,3	95,8	IE4	93,8	93,0	95,0	95,8	0,900	0,883	0,843	60	91	0,78438	625,0
110	150	315S-2	2970	183,90	1304,70	7,1	354,10	707,40	2,0	778,20	2,2	96,0	IE4	94,6	93,2	95,2	96,0	0,900	0,883	0,843	60	92	1,55760	968,0
132	180	315MA-2	2970	220,20	1562,40	7,1	424,90	848,90	2,0	933,80	2,2	96,2	IE4	94,8	93,3	95,4	96,2	0,900	0,883	0,843	62	92	2,40240	1100,0
160	215	315LA-2	2970	263,70	1871,10	7,1	514,90	1029,00	2,0	1131,90	2,0	96,3	IE4	94,9	93,4	95,6	96,3	0,910	0,892	0,852	63	92	2,74560	1160,5
200	270	315LB-2	2970	328,90	2334,00	7,1	643,60	1286,20	2,0	1414,80	2,2	96,5	IE4	95,1	93,6	95,8	96,5	0,910	0,892	0,852	63	92	3,14160	1221,0
250	335	355M-2	2980	411,00	2917,00	7,1	801,70	1602,40	2,0	1762,00	2,2	96,5	IE4	95,1	93,6	95,8	96,5	0,910	0,892	0,852	62	100	3,96000	2090,0
315	423	355L-2	2980	517,90	3676,00	7,1	1010,10	2019,00	7,1	1414,80	1,4	96,5	IE4	95,1	93,6	95,8	96,5	0,910	0,892	0,852	67	100	4,62000	2530,0
3	4	100LB-4	1447	6,37	48,62	8,1	20,11	70,16	3,5	79,12	3,9	90,7	IE4	91,1	88,5	87,7	90,4	0,756	0,682	0,527	46	64	0,04199	40,0
4	5,5	112M-4	1460	8,65	61,30	7,8	26,83	85,67	3,2	111,28	4,1	91,3	IE4	91,3	89,4	88,6	91,1	0,747	0,701	0,513	46	77	0,01588	43,0
15	20	160L-4	1473	27,23	173,38	6,3	99,71	164,72	1,6	278,23	2,8	94,1	IE4	94,2	92,8	90,6	93,9	0,864	0,823	0,715	65	75	0,38293	150,0
45	60	225M-4	1488	78,80	497,60	6,5	294,70	587,77	2,0	869,35	2,9	95,6	IE4	95,4	94,3	94,2	95,4	0,874	0,838	0,752	65	81	0,72337	353,0
55	75	250M-4	1485	94,77	554,00	6,1	368,10	587,15	1,6	938,18	2,5	95,8	IE4	95,2	55,8	94,6	95,7	0,902	0,877	0,267	76	83	0,87991	450,0
75	100	2805-4	1492	126,15	812,40	6,3	487,50	1005,22	2,1	1488,93	3,0	96,3	IE4	96,4	95,3	95,0	96,0	0,904	0,880	0,828	61	86	1,97005	605,0
90	120	280M-4	1489	151,19	1002,00	6,6	585,30	1222,82	8,7	1751,47	1,4	96,3	IE4	96,3	95,5	95,2	96,1	0,909	0,888	- 1	58	86	2,31241	700,0
110	150	315S-4	1480	187,50	1292,70	6,9	710,60	1561,60	2,2	1632,50	2,3	96,3	IE4	94,9	93,4	95,4	96,3	0,880	0,865	-	62		3,69498	925,0
132	180	315M-4	1480	224,70	1459,70	6,5	852,60	1873,90	2,2	1959,00	2,3	96,4	IE4	95,0	93,5	95,6	96,4	0,880	0,863	-	66	87	4,20012	1180,0
160	220	315LA-4	1480	271,80	1874,00	6,9	1033,30	2271,00	2,2	2374,00	2,3	96,6	IE4	95,2	93,7	95,8	96,6	0,880	0,863	0,824	60	87	19,02115	1160,5
200	270	315LB-4	1480	339,40	2340,70	6,9	1291,60	2839,20	2,2	2968,20	2,3	96,7	IE4	95,3	93,8	96,0	96,7	0,880	0,863	0,824	67	87	5,17720	1240,8
250	335	355M-4	1490	414,70	2960,90	6,9	1603,50	,	2,2	3685,40	2,3	96,7	IE4	95,3	93,8	96,0	96,7	0,900	0,883	0,843	65	94	8,61960	1870,0
315	423	355L-4	1490	522,60	3604,70	6,9	2020,30	4441,70	2,2	4643,00	2,3	96,7	IE4	95,3	93,8	96,0	96,7	0,900	0,878	0,843	70	94	10,87680	2090,0
355	483	400M-4	1490	595,38	4048,56	6,8	2275,34	,	1,7	5005,74	2,2	96,7	IE4	97,4	96,5	96,0	96,7	0,890	0,880	0,870	70	105	14,88000	2860,0
400	544	400MA-4	1490	670,85	4561,75	6,8	2563,76	4358,39	1,7	5640,27	2,2	96,7	IE4	96,6	96,5	96,0	96,7	0,890	0,880	0,870	70	105	15,19000	2980,0
455	620	400MB-4	1490	763,09	5188,99	6,8	2916,28	4957,67	1,7	6415,81	2,2	96,7	IE4	96,6	96,4	96,0	96,7	0,890	0,880	0,870	70	105	15,75000	3080,0
500	675	400LA-4	1490	838,56	5702,19	6,8	3204,70		1,7	7050,34	2,2	96,7	IE4	96,6	96,4	96,0	96,7	0,890	0,880	0,870	70	105	18,57000	3345,0
560	760	400LB-4	1490	939,18	6386,45	6,8	3589,26	6101,74	1,7	7896,38	2,2	96,7	IE4	96,6	96,5	96,0	96,7	0,890	0,880	0,870	70	108	19,84000	3490,0
630	857	400LC-4	1490	1056,58	7184,76	6,8	4037,92	6864,46	1,7	8883,42	2,2	96,7	IE4	96,6	96,5	96,0	96,7	0,890	0,880	0,870	70	108	21,51000	3750,0


KW	Нр	Tun		ln	ls	ls	Cn	Cs	Cs	Cmax	Cmax		1	n %		min	min	Leistun	gsfaktor	cosφ	ΔΤ	LwA	J	V.a.
I NVV	пр	Тур	rpm	(A)	(A)	In	(Nm)	(Nm)	Cn	(Nm)	Cn	100%	ΙE	75%	50%	IE3	IE4	100%	75%	50%	(°C)	(dB)	Kgm ²	Kg
0,75	1	905-6	950	1,82	8,11	4,5	7,58	18,21	2,3	19,74	2,5	83,9	IE4	83,9	80,3	78,9	82,7	0,699	0,614	0,478	40	55	0,00466	23,0
1,5	2	100L-6	959	3,68	18,36	5,3	15,37	35,77	2,3	42,49	15,5	86,1	IE4	86,1	83,9	82,5	85,9	0,704	0,595	0,467	49	60	0,01152	35,0
2,2	3	112M-6	968	5,59	29,55	5,3	21,82	51,71	2,4	66,11	3,0	87,5	IE4	87,3	85,8	84,3	87,4	0,652	0,548	0,413	53	62	0,01152	44,0
37	50	250M-6	986	63,62	304,50	4,6	368,30	524,43	1,4	817,68	2,2	94,6	IE4	95,1	94,7	93,3	94,5	0,916	0,900	0,846	65	75	1,06640	420,0
75	100	315S-6	990	132,10	901,10	6,7	724,50	1461,70	2,0	1534,80	2,1	95,4	IE4	94,0	92,6	94,6	95,4	0,860	0,843	0,805	66	82	4,18775	855,0
90	125	315MA-6	990	161,9	1090,70	6,7	869,20	1754,10	2,0	1841,80	2,1	95,6	IE4	94,2	92,8	94,9	95,6	0,840	0,823	0,787	65	82	6,04670	920,0
110	150	315LA-6	990	195,10	1314,60	6,7	1062,20	2143,90	2,0	2251,10	2,1	95,8	IE4	94,4	93,0	95,1	95,8	0,850	0,833	0,796	60	82	6,59450	1111,0
132	180	315LB-6	985	230,9	1554,00	6,7	1281,00	2572,00	2,0	2701,00	2,1	96,0	IE4	94,6	93,2	95,4	96,0	0,860	0,843	0,805	68	82	7,40520	1254,0
160	220	355MA-6	990	276,1	1858,40	6,7	1544,80	3118,40	2,0	3274,30	2,1	96,2	IE4	94,8	93,3	95,6	96,2	0,870	0,853	0,815	68	84	11,49500	1705,0
200	270	355MB-6	980	344,7	2318,00	6,7	1950,50	3897,00	2,0	4092,00	2,1	96,3	IE4	94,9	93,4	95,8	96,3	0,870	0,853	0,815	63	84	12,58400	1760,0
250	335	355L-6	970	429,9	2897,00	6,7	2463,10	4872,00	2,0	5116,00	2,1	96,5	IE4	95,1	93,6	95,8	96,3	0,870	0,853	0,815	70	85	15,00400	1870,0
315	423	400L-6	990	548,99	3568,44	6,5	3038,64	6077,27	2,0	6685,00	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	98	16,80000	3045,0
355	483	400LA-6	990	618,70	4021,58	6,5	3424,49	6848,99	2,0	7533,89	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	98	19,45000	3150,0
400	544	400LB-6	990	697,13	4531,35	6,5	3858,59	7717,17	2,0	8488,89	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	98	21,88000	3270,0
450	620	400LC-6	990	784,27	5097,77	6,5	4340,91	8681,82	2,0	9550,00	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	102	22,56000	3430,0
500	675	400LD-6	990	871,41	5664,19	6,5	4823,23	9646,46	2,0	10611,11	2,2	96,3	IE4	96,4	95,4	95,8	96,3	0,860	0,730	0,605	70	102	23,79000	3620,0
0,75	1	100LA-8	713	2,15	8,73	4,1	10,05	21,87	2,2	27,50	2,7	79,7	IE4	78,9	73,8	75,0	78,4	0,633	0,542	0,419	34	57	0,01362	19,3
37	50	280S-8	740	71,01	309,30	4,3	489,80	758,66	1,5	995,56	0,4	93,3	IE4	93,8	93,0	90,3	93,1	0,826	0,785	0,689	67	76	8,78078	500,0
90	125	315LA-8	742	169,30	683,30	4,1	1175,90	1398,64	1,2	2219,05	2,0	94,7	IE4	95,3	94,9	93,4	94,4	0,819	0,794	0,725	67	82	25,15510	1055,0

Jedes 2D- oder 3D-PDF-Datenblatt oder 3D-CAD-Modell mit oder ohne Getriebe, VFDs und Sonderausführungen kann heruntergeladen werden von https://www.motive.it/en/configuratore.php


Anm.: Die Motoren können jederzeit verbessert werden. Die Daten auf www.motive.it können aktualisiert werden. Jede Angabe ist durch einen Prüfbericht näher ausgeführt und belegt, der unter www.motive.it heruntergeladen werden kann. Auch die Liste der IE4-Motoren wird ständig erweitert.

LAGER UND ÖLSPRITZRINGE

	Pole N°	ÖLSPRITZRINGE		LAGER	
Baugrösse		6	7	4	(5)
56	2 – 8	12x24x7	12x24x7	6201 ZZ-C3	6201 ZZ-C3
63	2 – 8	12x24x7	12x24x7	6201 ZZ-C3	6201 ZZ-C3
71	2 – 8	15x30x7	15x26x7	6202 ZZ-C3	6202 ZZ-C3
80	2 – 8	20x35x7	20x35x7	6204 ZZ-C3	6204 ZZ-C3
90	2 – 8	25x40x7	25x40x7	6205 ZZ-C3	6205 ZZ-C3
100	2 – 8	30x47x7	30x47x7	6206 ZZ-C3	6206 ZZ-C3
112	2 – 8	30x47x7	30x47x7	6206 ZZ-C3	6206 ZZ-C3
132	2 – 8	40x62x8	40x62x8	6208 ZZ-C3	6208 ZZ-C3
160	2 – 8	45x62x8	45x62x8	6309 ZZ-C3	6309 ZZ-C3
180	2 – 8	55x72x8	55x72x8	6311 ZZ-C3	6311 ZZ-C3
200	2 – 8	60x80x8	60x80x8	6312 ZZ-C3	6312 ZZ-C3
225	2 – 8	65x80x10	65x80x10	6313 ZZ-C3	6313 ZZ-C3
250	2 – 8	70x90x10	70x90x10	6314 ZZ-C3	6314 ZZ-C3
280	2	70x90x10	70x90x10	6314 ZZ-C3	6314 ZZ-C3
280	4 – 8	85x100x12	85x100x12	6317 ZZ-C3	6317 ZZ-C3
315	2	85x110x12	85x110x12	6317-C3	6317-C3
315	4 – 8	95x120x12	95x120x12	NU 319-C3	6319-C3
355	2	95x120x12	95x120x12	6319-C3	6319-C3
355	4 – 8	110x130x12	110x130x12	NU 322-C3	6322-C3
400	4 – 8	130X160X12	130X160X12	NU 326-C3	6326-C3

Auf Anfrage können auch Lager für Axialkräfte, Radialkräfte und für nicht standard Betriebstemperaturen montiert werden.

Fettnippel können optional mitgeliefert werden.

ALLGEMEINE VERKAUFSBEDINGUNGEN

ARTIKEL 1 GARANTIE

1.1. Die von Mal zu Mal schriftlich zwischen den Parteien getroffenen Vereinbarungen vorbehalten, garantiert Motive die Übereinstimmung der gelieferten Produkte

und der ausdrücklich getroffenen Abmachungen. Die Garantie bezüglich der Defekte beschränkt sich ausschließlich auf die Defekte an den Produkten, die auf Fehler am Entwurf, die Materialien oder die Konstruktion bei

Die Garantie berücksichtigt keine:

Motive zurückzuführen sind.

- * vom Transport oder Störungen an der elektrischen Anlage, falscher Installierung oder jeder beliebigen falschen Anwendung verursachte Schäden;
- * Eingriffe oder durch Einsatz von nicht original gelieferten Teilen/Ersatzteilen verursachte Schäden;
- * durch chemische Mittel oder Witterungen verursachte Schäden u./o. Fehler (z.B. ausgebranntes Material usw.)
- * Produkte ohne Markierung
- 1.2. Die Garantie hat eine Gültigkeit von 12 Monaten ab Verkaufsdatum.

Die Garantie unterliegt der ausdrücklichen schriftlichen Aufforderung an Motive, nach in der Folge angegebenen Punkten zu handeln.

Es werden keine Rückgaben oder Lastschriften akzeptiert, die nicht vorher vom Handelsbüro der Motive genehmigt sind.

Durch diese Genehmigung ist Motive verpflichtet, (nach Wahl) innerhalb eines akzeptablen Zeitraumes und in Anbetracht des Ausmaßes der Reklamation, alternativ:

a) dem Kunden ab Firma Produkte derselben Art und Qualität als Ersatz für die defekten oder nicht den Vereinbarungen entsprechenden Teile zu liefern; Motive kann in diesem Fall die Rückgabe der defekten Teile auf Kosten des Käufers verlangen, die in ihren Besitz übergehen;

b) auf eigene Kosten die defekten Teile reparieren oder die den Vereinbarungen nicht entsprechenden Teile im eigenen Betrieb ändern; in diesem Fall werden alle Transportkosten vom Käufer übernommen;

1.3. Die in diesem Artikel angeführte Garantie ersetzt die gesetzlichen Schadens- und Defektgarantien und schließt jede weitere Haftungspflicht der Motive für durch die gelieferten Produkte verursachte Schäden aus; insbesondere, kann der Käufer keine weiteren Ansprüche geltend machen.

Nach Ablauf der Garantie kann gegenüber Motive keine Haftpflicht mehr gefordert werden.

ARTIKEL 2

REKLAMATIONEN

2.1. In Anbetracht der Anwendbarkeit des Gesetzes vom 21. Juni 1971, in dem in Art. 1 angeführt wird:

die Reklamationen bezüglich Menge, Gewicht, Farbe Qualitätsmängel oder nicht den Vereinbarungen entsprechender Ware, die der Käufer feststellt, sobald er im Besitz der Ware ist, müssen von diesem innerhalb von 7 Tagen eingereicht werden, ansonsten

verfällt das Reklamationsrecht. Motive behält sich das Recht vor, Kontrollen von Außenstehenden ausführen zu lassen.

ARTIKEL 3

LIEFERUNG

3.1. Falls nicht anders schriftlich vereinbart, versteht sich der Verkauf ab Fabrik, dies auch wenn vereinbart wurde, dass die Spedition (auch teilweise) von Motive organisiert wird, indem sie als Mandant des Käufers handelt, da der Transport zu Lasten desselben geht. Falls der Liefertermin nicht ausdrücklich zwischen den Parteien vereinbart wurde, muss Motive die Produkte innerhalb 180 Tagen ab Vertragsabschluss liefern.

3.2. Im Falle von Lieferverzug eines Teils der Ware kann der Käufer den nicht gelieferten Teil des Auftrages nach Mitteilung durch Einschreiben an Motive stornieren und muss Motive eine Zeitspanne von 15 Werktagen nach Eintreffen der Mitteilung einräumen, in der Motive alle in der Stornierung angeführten, noch nicht gelieferten Produkte liefern kann. Es wird jede Verantwortung für Schäden abgelehnt, die durch Lieferverzug oder nicht erfolgte Lieferung, zum Teil oder gesamt, verursacht werden.

ARTIKEL 4 ZAHLUNG

4.1. Die Zahlung erfolgt, ausgenommen anders lautende schriftliche Vereinbarungen, bei der Lieferung im Firmensitz des Verkäufers. Eventuelle Zahlungen an Vertreter oder Verkaufsstellen des Verkäufers verstehen sich nicht als erfolgt, bis der betreffende Betrag nicht bei Motive eingeht.

4.2. Jede beliebige Verzögerung oder Unregelmäßigkeit bei der Zahlung gibt Motive das Recht, weitere laufende Verträge zu stornieren, auch wenn diese nicht mit den genannten Zahlungen in Verbindung gebracht werden, und das Recht auf eventuellen Schadenersatz. Motive hat das Recht – bei Ablauf der Zahlungsfrist, ohne den Zahlungsverzug zu melden – Verzugszinsen in Höhe des geltenden Zinssatzes, erhöht um 12 Punkte einzufordern.

4.3. Der Käufer ist verpflichtet, den gesamten Betrag zu zahlen, auch im Falle von Reklamationen oder Streitigkeiten.

KUNDENDIENST: Dem Kunden stehen spezialisierte Techniker der Motive zur Verfügung, falls er bei Reparaturen oder Einstellung der Maschine Schwierigkeiten hat. Der Kundendienst kann gegen Kostenerstattung, d.h. Stundentarif und Reisekosten, ab Abfahrt bis Rückkehr zur Firma, angefordert werden.

DOWNLOAD DER TECHNISCHEN ANLEITUNG VON WWW.MOTIVE.IT

ALLE DATEN SIND MIT GROßER SORGFALT ANGEGEBEN UND KONTROLLIERT WORDEN.

WIR ÜBERNEHMEN KEINE HAFTUNG FÜR EVENTUELLE FEHLER ODER

UNTERLASSUNGEN. MOTIVE KANN JEDERZEIT NACH EIGENEM

ERMESSEN DIE EIGENSCHAFTEN UND PREISE DER VERKAUFTEN PRODUKTE ÄNDERN.

Auf unserer Internet-Seite können Sie den Abschlussbericht der einzelnen Produkte durch Eingabe der dazugehörigen Seriennummer downloaden

ANDERE KATALOGE:

Motive s.r.l.

Via Le Ghiselle, 20

25014 Castenedolo (BS) - Italy

Tel.: +39.030.2677087 - Fax: +39.030.2677125

web site: www.motive.it e-mail: motive@motive.it

LOKALER VERTRETER